967 research outputs found

    Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure-response analysis of a Phase III study.

    Get PDF
    PurposeDasatinib is a prototypic short half-life BCR-ABL1 tyrosine kinase inhibitor. The recommended dose of dasatinib for chronic myeloid leukemia in chronic phase was changed from 70 mg twice daily to 100 mg once daily following a Phase III dose-optimization study. To better understand the superior benefit-risk profile of dasatinib 100 mg once daily, exposure-response was characterized for efficacy (major cytogenetic response) and safety (pleural effusion).Patients and methodsDasatinib exposure in patients with chronic myeloid leukemia in chronic phase was determined by population pharmacokinetic analysis of data from seven dasatinib clinical studies (N = 981), including the Phase III dose-optimization study (n = 567). Data from the Phase III study were then used to characterize exposure-response relationships for the four dasatinib treatment regimens investigated (100 mg once daily, 50 mg twice daily, 140 mg once daily, and 70 mg twice daily).ResultsMajor cytogenetic response was significantly (P < 0.01) associated with weighted average steady-state dasatinib plasma concentrations, and pleural effusion was significantly associated with trough concentration. Major cytogenetic response was also significantly associated with maintenance of uninterrupted dosing. The 100 mg once daily arm had the lowest steady-state trough concentration of the four dose arms investigated in the Phase III study, and although this arm also had the lowest weighted average steady-state dasatinib plasma concentration, it had the highest dose maintenance.ConclusionDasatinib dose optimization to 100 mg once daily from 70 mg twice daily significantly minimizes adverse events while maintaining efficacy by exploiting differences in the measures of exposure associated with efficacy and safety

    Causal Modifications of Gravity and Their Observational Bounds

    Full text link
    Since general relativity is the unique theory of massless spin 2 particles at large distances, the most reasonable way to have significant modifications is to introduce one or more light scalars that mediate a new long-range force. Most existing studies of such scalars invoke models that exhibit some kind of "screening" at short distances to hide the force from solar system tests. However, as is well known, such modifications also exhibit superluminality, which can be interpreted as a form of acausality. In this work we explore explicitly subluminal and causal scalar field models. In particular, we study a conformally coupled scalar ϕ\phi, with a small coupling to matter to obey solar system bounds, and a non-canonical kinetic term K(X)K(X) (X=(∂ϕ)2/2X=(\partial\phi)^2/2) that obeys all subluminality constraints and is hyperbolic. We consider K(X)K(X) that is canonical for small XX, but beyond some nonlinear scale enters a new scaling regime of power pp, with 1/2<p<11/2<p<1 (the DBI kinetic term is the limit p=1/2p=1/2 and a canonical scalar is p=1p=1). As opposed to screening (and superluminality), this new force becomes more and more important in the regime of high densities (and subluminality). We then turn to the densest environments to put bounds on this new interaction. We compute constraints from precession in binary systems such as Hulse-Taylor, we compute corrections to neutron star hydrostatic equilibrium, and we compute power in radiation, both tensor mode corrections and the new scalar mode, which can be important during mergers.Comment: 43 pages, 5 figures. V3: Small update

    Rational Design, Synthesis and Biological Evaluation of Pyrimidine-4,6-diamine derivatives as Type-II inhibitors of FLT3 Selective Against c-KIT.

    Get PDF
    FMS-like Tyrosine Kinase 3 (FLT3) is a clinically validated target for acute myeloid leukemia (AML). Inhibitors targeting FLT3 have been evaluated in clinical studies and have exhibited potential to treat FLT3-driven AML. A frequent, clinical limitation is FLT3 selectivity, as concomitant inhibition of FLT3 and c-KIT is thought to cause dose-limiting myelosuppression. Through a rational design approach, novel FLT3 inhibitors were synthesized employing a pyridine/pyrimidine warhead. The most potent compound identified from the studies is compound 13a, which exhibited an IC50 value of 13.9 ± 6.5 nM against the FLT3 kinase with high selectivity over c-KIT. Mechanism of action studies suggested that 13a is a Type-II kinase inhibitor, which was also supported through computer aided drug discovery (CADD) efforts. Cell-based assays identified that 13a was potent on a variety of FLT3-driven cell lines with clinical relevance. We report herein the discovery and therapeutic evaluation of 4,6-diamino pyrimidine-based Type-II FLT3 inhibitors, which can serve as a FLT3-selective scaffold for further clinical development
    • …
    corecore