2 research outputs found

    The Anthropocene within the Geological Time Scale: a response to fundamental questions

    No full text
    The Anthropocene as a prospective new, ongoing series/ epoch must be defensible against all relevant concerns. We address the seven, still-relevant challenges posed to the Anthropocene Working Group by the Chair, International Commission on Stratigraphy (ICS), in 2014. (1) Concept or reality? The Anthropocene possesses a substantial, sharply distinctive stratigraphic record recognisable through many proxy signals from the mid-20th century onwards; (2) GSSP or GSSA? The Anthropocene can be defined by a GSSP and correlated globally; (3) Past or future? The Anthropocene unquestionably represents geological time, its transformations having already moved the Earth System beyond Holocene norms towards an irreversible future trajectory; (4) Utility? The Anthropocene's distinctive material content allows useful delineation on geological sections/ maps; (5) Indelibility? Many of the Anthropocene's transformative effects cannot be subsequently effaced or overprinted; (6) Fit within the Geological Time Scale (GTS)? The Anthropocene represents a unique, youngest, interval in Earth history and strata of profound significance; (7) What is its value? The chronostratigraphic Anthropocene has conceptual usefulness even informally, but would then lack the clarity, stability and recognition that formalization provides. Without its formalization, the GTS would no longer accurately reflect Earth history, diminishing the relevance of geological science for analysis of ongoing planetary change

    Palaeontological signatures of the Anthropocene are distinct from those of previous epochs

    No full text
     The “Great Acceleration” of the mid-20th century provides the causal mechanism of the Anthropocene, which has been proposed as a new epoch of geological time beginning in 1952 CE. Here we identify key parameters and their diagnostic palaeontological signals of the Anthropocene, including the rapid breakdown of discrete biogeographical ranges for marine and terrestrial species, rapid changes to ecologies resulting from climate change and ecological degradation, the spread of exotic foodstuffs beyond their ecological range, and the accumulation of reconfigured forest materials such as medium density fibreboard (MDF) all being symptoms of the Great Acceleration. We show: 1) how Anthropocene successions in North America, South America, Africa, Oceania, Europe, and Asia can be correlated using palaeontological signatures of highly invasive species and changes to ecologies that demonstrate the growing interconnectivity of human systems; 2) how the unique depositional settings of landfills may concentrate the remains of organisms far beyond their geographical range of environmental tolerance; and 3) how a range of settings may preserve a long-lived, unique palaeontological record within post-mid-20th century deposits. Collectively these changes provide a global palaeontological signature that is distinct from all past records of deep-time biotic change, including those of the Holocene. </p
    corecore