2,150 research outputs found
Neural indicators of fatigue in chronic diseases : A systematic review of MRI studies
The authors would like to thank the Sir Jules Thorn Charitable Trust for their financial support.Peer reviewedPublisher PD
Postirradiation behavior of p-channel charge-coupled devices irradiated at 153 K
The displacement damage hardness that can be achieved using p-channel charge-coupled devices (CCD) was originally demonstrated in 1997, and since then a number of other studies have demonstrated an improved tolerance to radiation-induced CTI when compared to n-channel CCDs. A number of recent studies have also shown that the temperature history of the device after the irradiation impacts the performance of the detector, linked to the mobility of defects at different temperatures. This study describes the initial results from an e2v technologies p-channel CCD204 irradiated at 153 K with a 10 MeV equivalent proton fluences of 1.24×109 and 1.24×1011 protons cm-2. The dark current, cosmetic quality and the number of defects identified using trap pumping immediately were monitored after the irradiation for a period of 150 hours with the device held at 153 K and then after different periods of time at room temperature. The device also exhibited a flatband voltage shift of around 30 mV / krad, determined by the reduction in full well capacity
Evolution and impact of defects in a p-channel CCD after cryogenic proton-irradiation
P-channel CCDs have been shown to display improved tolerance to radiation-induced charge transfer inefficiency (CTI) when compared to n-channel CCDs. However, the defect distribution formed during irradiation is expected to be temperature dependent due to the differences in lattice energy caused by a temperature change. This has been tested through defect analysis of two p-channel e2v CCD204 devices, one irradiated at room temperature and one at a cryogenic temperature (153K). Analysis is performed using the method of single trap pumping. The dominant charge trapping defects at these conditions have been identified as the donor level of the silicon divacancy and the carbon interstitial defect. The defect parameters are analysed both immediately post irradiation and following several subsequent room-temperature anneal phases up until a cumulative anneal time of approximately 10 months. We have also simulated charge transfer in an irradiated CCD pixel using the defect distribution from both the room-temperature and cryogenic case, to study how the changes affect imaging performance. The results demonstrate the importance of cryogenic irradiation and annealing studies, with large variations seen in the defect distribution when compared to a device irradiated at room-temperature, which is the current standard procedure for radiation-tolerance testing
The relationship between pumped traps and signal loss in buried channel CCDs
Pocket-pumping is an established technique for identifying the locations of charge trapping sites within the transport channels of CCDs. Various parameters of the pumping process can be manipulated to increase the efficiency, or allow characterisation of the trap sites effective during nominal operating modes. A CCD273 was irradiated in a triangular region by protons to a 10 MeV equivalent fluence of 1.2E9 p cm2, ensuring a suitably low trap density for ease of automated trap recognition. X-rays of 5,898 eV were incident on the CCD above the region irradiated with the triangle, such that events could be analysed having passed through an increasing length of irradiated silicon and hence number of trapping sites. Here we present the relationship between the number of traps identified by pocket pumping within the parallel transport channels of a CCD273 and the amount of signal that is deferred by the trapping process during readout
The noise performance of electron-multiplying charge-coupled devices at X-ray energies
Electron-multiplying charge-coupled devices (EMCCDs) are used in low-light-level (L3) applications for detecting optical, ultraviolet, and near-infrared photons (10–1100 nm). The on-chip gain process is able to increase the detectability of any signal collected by the device through the multiplication of the signal before the output node. Thus, the effective readout noise can be reduced to subelectron levels, allowing the detection of single photons. However, this gain process introduces an additional noise component due to the stochastic nature of the multiplication. In optical applications, this additional noise has been characterized. The broadening of the detected peak is described by the excess noise factor. This factor tends to a value of √2 at high gain (>100x). In X-ray applications, the situation is improved by the effect that Fano factor f has on the shot noise associated with X-ray photon detection (f ≈ 0.12 at X-ray energies). In this paper, the effect of the detection of X-ray photons in silicon is assessed both analytically and through a Monte Carlo model of the gain amplification process. The excess noise on the signal is predicted (termed the modified Fano factor) for photon detection in an EM-CCD at X-ray energies. A hypothesis is made that the modified Fano factor should tend to 1.115 at high levels of gain (>10x). In order to validate the predictions made, measurements were taken using an 55 Fe source with Mn k-alpha X-ray energy of 5898 eV. These measurements allowed the hypothesis to be verified
Point-spread function and photon transfer of a CCD for space-based astronomy
A front-illuminated development Euclid charge-coupled device (CCD) is tested to observe the CCD point-spread function (PSF) relative to signal size using a single-pixel photon transfer curve (SP-PTC) technique. In the process of generating a SP-PTC charge redistribution effects were observed. In attempting to show that charge redistribution can be caused by exposing a charge-populated well in the CCD array to further illumination, excess charge became apparent in recorded data. Excess charge is suggested to be proportionally generated in the CCD array if existing charge is subjected to further illumination before transfer and readout. The construction of an optical test bench and CCD operating variables are discussed alongside systematic error concerns and mitigation techniques
Developing a high-resolution x-ray imager using electron-multiplying (EM) CCDs
Applications at synchrotron facilities such as macromolecular crystallography and high energy X-ray diffraction require high resolution imaging detectors with high dynamic range and large surface area. Current systems can be split into two main categories: hybrid pixel detectors and scintillator-coupled Charge-Coupled Devices (CCDs). Whilst both have limitations, CCD-based systems (coupled to fibre-optics to increase imaging area) are often used in these applications due to their small pixels and the high resolution. Electron-Multiplication CCDs (EM-CCDs) are able to suppress the readout noise associated with increased readout speed offering a low noise, high speed detector solution. A previous pilot study using a small-area (8 mm × 8 mm) scintillator-coupled EM-CCD found that through high frame-rates, low noise and novel uses of photon-counting, resolution could be improved from over 80 μm to 25 μm at 2 fps. To further improve this detector system, high speed readout electronics can be used alongside a fibre-optic taper and EM-CCD to create a “best of both worlds” solution consisting of the high resolution of a CCD, along with the low noise, high speed (high dynamic range) and large effective area of pixel detectors. This paper details the developments in the study and discusses the latest results and their implication on the system design
Comparing simulations and test data of a radiation damaged charge-coupled device for the Euclid mission
The visible imager instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large charge-coupled device (CCD) array. Due to the harsh radiative environment outside the Earth’s atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will be possible only through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signals through a radiation-damaged CCD. The software is based on Shockley–Read–Hall theory and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes the three-dimensional trap position, potential structure of the pixel, and multilevel clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding making any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps
Candida albicans colonization and dissemination from the murine gastrointestinal tract : the influence of morphology and Th17 immunity
This article is protected by copyright. All rights reserved. This work was supported by the Wellcome Trust (086558, 080088, 102705), a Wellcome Trust Strategic Award (097377) and a studentship from the University of Aberdeen. D.K. was supported by grant 5R01AI083344 from the National Institute of Allergy and Infectious Diseases and by a Voelcker Young Investigator Award from the Max and Minnie Tomerlin Voelcker Fund.Peer reviewedPublisher PD
Determination of <i>in situ</i> trap properties in CCDs using a "single-trap pumping" technique
The science goals of space missions from the Hubble Space Telescope through to Gaia and Euclid require ultraprecise positional, photometric, and shape measurement information. However, in the radiation environment of the space telescopes, damage to the focal plane detectors through high-energy protons leads to the creation of traps, a loss of charge transfer efficiency, and a consequent deterioration in measurement accuracy. An understanding of the traps produced and their properties in the CCD during operation is essential to allow optimization of the devices and suitable modeling to correct the effect of the damage through the postprocessing of images. The technique of “pumping single traps” has allowed the study of individual traps in high detail that cannot be achieved with other techniques, such as deep level transient spectroscopy, whilst also locating each trap to the subpixel level in the device. Outlining the principles used, we have demonstrated the technique for the A-center, the most influential trap in serial readout, giving results consistent with the more general theoretical values, but here showing new results indicating the spread in the emission times achieved and the variation in capture probability of individual traps with increasing signal levels. This technique can now be applied to other time and temperature regimes in the CCD to characterize individual traps in situ under standard operating conditions such that dramatic improvements can be made to optimization processes and modeling techniques
- …