303 research outputs found

    Experiments in the automatic marking of ER-Diagrams

    Get PDF
    In this paper we present an approach to the computer understanding of diagrams and show how it can be successfully applied to the automatic marking (grading) of student attempts at drawing entity-relationship (ER) diagrams. The automatic marker has been incorporated into a revision tool to enable students to practice diagramming and obtain feedback on their attempts

    Using patterns in the automatic marking of ER-Diagrams

    Get PDF
    This paper illustrates how the notion of pattern can be used in the automatic analysis and synthesis of diagrams, applied particularly to the automatic marking of ER-diagrams. The paper describes how diagram patterns fit into a general framework for diagram interpretation and provides examples of how patterns can be exploited in other fields. Diagram patterns are defined and specified within the area of ER-diagrams. The paper also shows how patterns are being exploited in a revision tool for understanding ER-diagrams

    Preheating After Modular Inflation

    Full text link
    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kahler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.Comment: 34 pages, 10 figures. Accepted for publication in JCA

    Reheating the Universe After Multi-Field Inflation

    Full text link
    We study in detail (p)reheating after multi-field inflation models with a particular focus on N-flation. We consider a variety of different couplings between the inflatons and the matter sector, including both quartic and trilinear interactions with a light scalar field. We show that the presence of multiple oscillating inflatons makes parametric resonance inefficient in the case of the quartic interactions. Moreover, perturbative processes do not permit a complete decay of the inflaton for this coupling. In order to recover the hot big bang, we must instead consider trilinear couplings. In this case we show that strong nonperturbative preheating is possible via multi-field tachyonic resonance. In addition, late-time perturbative effects do permit a complete decay of the condensate. We also study the production of gauge fields for several prototype couplings, finding similar results to the trilinear scalar coupling. During the course of our analysis we develop the mathematical theory of the quasi-periodic Mathieu equation, the multi-field generalization of the Floquet theory familiar from preheating after single field inflation. We also elaborate on the theory of perturbative decays of a classical inflaton condensate, which is applicable in single-field models also.Comment: 46+1 pages, 19 figure

    Block copolypeptide nanoparticles for the delivery of ocular therapeutics

    Get PDF
    Self-assembling block copolypeptides were prepared by sequential ring-opening polymerization of N-carboxyanhydride (NCA) derivatives of γ-benzyl-L-glutamic acid and ε-carbobenzyloxy-L-lysine, followed by selective deprotection of the benzyl glutamate block. The synthesized polymers had number average molecular weights close to theoretical values, and had low dispersities (ĐM = 1.15–1.28). Self-assembly of the amphiphilic block copolymers into nanoparticles was achieved using the “solvent-switch” method, whereby the polymer was dissolved in THF and water and the organic solvent removed by rotary evaporation. The type of nanostructures formed varied from spherical micelles to a mixture of spherical and worm-like micelles, depending on copolymer composition. The spherical micelles had an average diameter of 43 nm by dynamic light scattering, while the apparent diameter of the mixed phase system was around 200nm. Reproducibility of nanoparticle preparation was demonstrated to be excellent; almost identical DLS traces were obtained over three repeats. Following qualitative dye-solubilization experiments, the nanoparticles were loaded with the ocular anti-inflammatory drug dexamethasone. Loading efficiency of the nanoparticles was 90% and the cumulative drug release was 94% over 16 d, with a 20% burst release in the first 24 h.mabi201400471-gra-000

    Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large Nongaussianity

    Full text link
    Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars \phi are naturally coupled to gauge fields through c \phi F \tilde{F}. In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the "vacuum" perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling, c, of the pseudo-scalar inflaton to any gauge field must be smaller than about 10^{2} M_p^{-1}.Comment: 45 pages, 7 figure

    Automated link analysis using radio frequency identification (RFID)

    Get PDF
    Being able to accurately record the interactions which take place within any environment is beneficial for understanding human behaviour in a wide range of industries. Link Analysis is a standard technique which is often used, but traditional pen and paper methods are cumbersome and time consuming. This paper details a way to automate recording the interactions between a human and their current environment by using radio frequency identification (RFID) tags and a subject-mounted receiver. Using the results from the system, it is possible to instantly create conventional Link Analysis diagrams and tables, reducing the time and resources required for data collection and analysis. The system has been developed in partnership with the Healthcare Ergonomics and Patient Safety Unit (HEPSU) at Loughborough University, with initial focus being on monitoring paramedics, patients and environment interactions within an ambulance; however, the technologies and the analyser system are not limited to use within this particular field

    Zero-divisor graphs of nilpotent-free semigroups

    Full text link
    We find strong relationships between the zero-divisor graphs of apparently disparate kinds of nilpotent-free semigroups by introducing the notion of an \emph{Armendariz map} between such semigroups, which preserves many graph-theoretic invariants. We use it to give relationships between the zero-divisor graph of a ring, a polynomial ring, and the annihilating-ideal graph. Then we give relationships between the zero-divisor graphs of certain topological spaces (so-called pearled spaces), prime spectra, maximal spectra, tensor-product semigroups, and the semigroup of ideals under addition, obtaining surprisingly strong structure theorems relating ring-theoretic and topological properties to graph-theoretic invariants of the corresponding graphs.Comment: Expanded first paragraph in section 6. To appear in J. Algebraic Combin. 22 page

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio
    corecore