148 research outputs found

    From gamma ray line signals of dark matter to the LHC

    Get PDF
    We explore the relationship between astrophysical gamma-ray signals and LHC signatures for a class of phenomenologically successful secluded dark matter models, motivated by recent evidence for a ~130 GeV gamma-ray line. We consider in detail scenarios in which interactions between the dark sector and the standard model are mediated by a vev-less scalar field \phi, transforming as an N-plet (N > 3) under SU(2)_L. Since some of the component fields of \phi carry large electric charges, loop induced dark matter annihilation to \gamma \gamma and \gamma Z can be enhanced without the need for non-perturbatively large couplings, and without overproduction of continuum gamma-rays from other final states. We discuss prospects for other experimental tests, including dark matter-nucleon scattering and production of \phi at the LHC, where future searches for anomalous charged tracks may be sensitive. The first LHC hints could come from the Higgs sector, where loop corrections involving \phi lead to significantly modified h to \gamma \gamma and h to \gamma Z branching ratios.Comment: 27 pages, 10 figures. v2: added references, fixed import-order issue with cleveref and hyperref. v3: updated to journal version. v4: erratum correction to figs. 7-8 for monojet/monophoton cross-section

    Unified Scenario for Composite Right-Handed Neutrinos and Dark Matter

    Full text link
    We entertain the possibility that neutrino masses and dark matter (DM) originate from a common composite dark sector. A minimal effective theory can be constructed based on a dark SU(3)DSU(3)_D interaction with three flavors of massless dark quarks; electroweak symmetry breaking gives masses to the dark quarks. By assigning a Z2\mathbb Z_2 charge to one flavor, a stable "dark kaon" can provide a good thermal relic DM candidate. We find that "dark neutrons" may be identified as right handed Dirac neutrinos. Some level of "neutron-anti-neutron" oscillation in the dark sector can then result in non-zero Majorana masses for light Standard Model neutrinos. A simple ultraviolet completion is presented, involving additional heavy SU(3)DSU(3)_D-charged particles with electroweak and lepton Yukawa couplings. At our benchmark point, there are "dark pions" that are much lighter than the Higgs and we expect spectacular collider signals arising from the UV framework. This includes the decay of the Higgs boson to ττℓℓ′\tau \tau \ell \ell^{\prime}, where ℓ\ell(ℓ′\ell') can be any lepton, with displaced vertices. We discuss the observational signatures of this UV framework in dark matter searches and primordial gravitational wave experiments; the latter signature is potentially correlated with the H→ττℓℓ′H \to \tau \tau \ell \ell^{\prime} decay.Comment: 8 pages, 4 figures, 1 table. Version published on PR
    • …
    corecore