3,048 research outputs found
Detection of major ASL sign types in continuous signing for ASL recognition
In American Sign Language (ASL) as well as other signed languages, different classes of signs (e.g., lexical signs, fingerspelled signs, and classifier constructions) have different internal structural properties. Continuous sign recognition accuracy can be improved through use of distinct recognition strategies, as well as different training datasets, for each class of signs. For these strategies to be applied, continuous signing video needs to be segmented into parts corresponding to particular classes of signs. In this paper we present a multiple instance learning-based segmentation system that accurately labels 91.27% of the video frames of 500 continuous utterances (including 7 different subjects) from the publicly accessible NCSLGR corpus (Neidle and Vogler, 2012). The system uses novel feature descriptors derived from both motion and shape statistics of the regions of high local motion. The system does not require a hand tracker
Scalable ASL sign recognition using model-based machine learning and linguistically annotated corpora
We report on the high success rates of our new, scalable, computational approach for sign recognition from monocular video, exploiting linguistically annotated ASL datasets with multiple signers. We recognize signs using a hybrid framework combining state-of-the-art learning methods with features based on what is known about the linguistic composition of lexical signs. We model and recognize the sub-components of sign production, with attention to hand shape, orientation, location, motion trajectories, plus non-manual features, and we combine these within a CRF framework. The effect is to make the sign recognition problem robust, scalable, and feasible with relatively smaller datasets than are required for purely data-driven methods. From a 350-sign vocabulary of isolated, citation-form lexical signs from the American Sign Language Lexicon Video Dataset (ASLLVD), including both 1- and 2-handed signs, we achieve a top-1 accuracy of 93.3% and a top-5 accuracy of 97.9%. The high probability with which we can produce 5 sign candidates that contain the correct result opens the door to potential applications, as it is reasonable to provide a sign lookup functionality that offers the user 5 possible signs, in decreasing order of likelihood, with the user then asked to select the desired sign
A new web interface to facilitate access to corpora: development of the ASLLRP data access interface
A significant obstacle to broad utilization of corpora is the difficulty in gaining access to the specific subsets of data and annotations that may be relevant for particular types of research. With that in mind, we have developed a web-based Data Access Interface (DAI), to provide access to the expanding datasets of the American Sign Language Linguistic Research Project (ASLLRP). The DAI facilitates browsing the corpora, viewing videos and annotations, searching for phenomena of interest, and downloading selected materials from the website. The web interface, compared to providing videos and annotation files off-line, also greatly increases access by people that have no prior experience in working with linguistic annotation tools, and it opens the door to integrating the data with third-party applications on the desktop and in the mobile space. In this paper we give an overview of the available videos, annotations, and search functionality of the DAI, as well as plans for future enhancements. We also summarize best practices and key lessons learned that are crucial to the success of similar projects
Facial Feature Tracking and Occlusion Recovery in American Sign Language
Facial features play an important role in expressing grammatical information in signed languages, including American Sign Language(ASL). Gestures such as raising or furrowing the eyebrows are key indicators of constructions such as yes-no questions. Periodic head movements (nods and shakes) are also an essential part of the expression of syntactic information, such as negation (associated with a side-to-side headshake). Therefore, identification of these facial gestures is essential to sign language recognition. One problem with detection of such grammatical indicators is occlusion recovery. If the signer's hand blocks his/her eyebrows during production of a sign, it becomes difficult to track the eyebrows. We have developed a system to detect such grammatical markers in ASL that recovers promptly from occlusion. Our system detects and tracks evolving templates of facial features, which are based on an anthropometric face model, and interprets the geometric relationships of these templates to identify grammatical markers. It was tested on a variety of ASL sentences signed by various Deaf native signers and detected facial gestures used to express grammatical information, such as raised and furrowed eyebrows as well as headshakes.National Science Foundation (IIS-0329009, IIS-0093367, IIS-9912573, EIA-0202067, EIA-9809340
NEW shared & interconnected ASL resources: SignStream® 3 Software; DAI 2 for web access to linguistically annotated video corpora; and a sign bank
2017 marked the release of a new version of SignStream® software, designed to facilitate linguistic analysis of ASL video. SignStream® provides an intuitive interface for labeling and time-aligning manual and non-manual components of the signing. Version 3 has many new features. For example, it enables representation of morpho-phonological information, including display of handshapes. An expanding ASL video corpus, annotated through use of SignStream®, is shared publicly on the Web. This corpus (video plus annotations) is Web-accessible—browsable, searchable, and downloadable—thanks to a new, improved version of our Data Access Interface: DAI 2. DAI 2 also offers Web access to a brand new Sign Bank, containing about 10,000 examples of about 3,000 distinct signs, as produced by up to 9 different ASL signers. This Sign Bank is also directly accessible from within SignStream®, thereby boosting the efficiency and consistency of annotation; new items can also be added to the Sign Bank. Soon to be integrated into SignStream® 3 and DAI 2 are visualizations of computer-generated analyses of the video: graphical display of eyebrow height, eye aperture, an
3D face tracking and multi-scale, spatio-temporal analysis of linguistically significant facial expressions and head positions in ASL
Essential grammatical information is conveyed in signed languages by clusters of events involving facial expressions and movements of the head and upper body. This poses a significant challenge for computer-based sign language recognition. Here, we present new methods for the recognition of nonmanual grammatical markers in American Sign Language (ASL) based on: (1) new 3D tracking methods for the estimation of 3D head pose and facial expressions to determine the relevant low-level features; (2) methods for higher-level analysis of component events (raised/lowered eyebrows, periodic head nods and head shakes) used in grammatical markings—with differentiation of temporal phases (onset, core, offset, where appropriate), analysis of their characteristic properties, and extraction of corresponding features; (3) a 2-level learning framework to combine lowand high-level features of differing spatio-temporal scales. This new approach achieves significantly better tracking and recognition results than our previous methods
A new framework for sign language recognition based on 3D handshape identification and linguistic modeling
Current approaches to sign recognition by computer generally have at least some of the following limitations: they rely on laboratory
conditions for sign production, are limited to a small vocabulary, rely on 2D modeling (and therefore cannot deal with occlusions
and off-plane rotations), and/or achieve limited success. Here we propose a new framework that (1) provides a new tracking method
less dependent than others on laboratory conditions and able to deal with variations in background and skin regions (such as the
face, forearms, or other hands); (2) allows for identification of 3D hand configurations that are linguistically important in American
Sign Language (ASL); and (3) incorporates statistical information reflecting linguistic constraints in sign production. For purposes of
large-scale computer-based sign language recognition from video, the ability to distinguish hand configurations accurately is critical.
Our current method estimates the 3D hand configuration to distinguish among 77 hand configurations linguistically relevant for
ASL. Constraining the problem in this way makes recognition of 3D hand configuration more tractable and provides the information
specifically needed for sign recognition. Further improvements are obtained by incorporation of statistical information about linguistic
dependencies among handshapes within a sign derived from an annotated corpus of almost 10,000 sign tokens
NUCLEIC-ACID BINDING DRUGS .2. PROFLAVINE FREE BASE
C13HIIN3.H20 , orthorhombic, Cmc21, a=
14.493 (8), b= 14.675 (8), c= 5.772 (5) A, Din= 1.29 (1),
De= 1.298 g cm -3 for Z=4. Equi-inclination Weissenberg
intensities, scanned with an automatic densitometer.
The structure, solved by direct methods, was
refined to R 0.0928 and Rw 0.0910 for 418 reflexions.
The ring system is slightly non-planar, and the crystal
structure is characterized by a lack of interplanar
stacking
- …
