237 research outputs found

    A report of the tests performed on the Zeiss H alpha filter

    Get PDF
    Bandpass testing of Zeiss H-alpha filter to determine wavelength of transmission and optical characteristic

    The largest white light flare ever observed: 25 April 1984, 0001 UT

    Get PDF
    The X13/3B flare of 25 April 1984, 0001 UT, was accompanied by intense white light emission that reached a peak power output approx 2x10 to the 29 erg/sec in the optical/near UV continuum; the total energy radiated in the continuum alone reached 10 to the 32 power ergs. This was the most powerful white light flare yet recorded, exceeding the peak output of the largest previously known event by more than one order of magnitude. The flare was a two-ribbon type with intense embedded kernels as observed in both Balmer-alpha line and Balmer continuum, and each of these flare ribbons covered separate umbrae shortly after the maximum of the event. The onset and peak of the white light emission coincided with the onset and peak of the associated E greater than 100 KeV hard X-ray burst, while the 1-8 angstrom soft X-ray emission reached its maximum 4 minutes after the peak in white light

    Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources

    Get PDF
    White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares

    Are "EIT Waves" Fast-Mode MHD Waves?

    Full text link
    We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.Comment: to be published in the Astrophysical Journa

    TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)

    Get PDF
    N,N,N’,N’‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron‐catalysis, finding application in reactions as diverse as cross‐coupling, C‐H activation and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. Key is the initial formation of TMEDA‐iron(II) alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis

    Direct Metal Laser-sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes

    Get PDF
    Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, which was attributed to the random grain orientation observed on both the planes. However, the average micro-hardness of the DMLS-fabricated 316L stainless steel in this contribution was approximately 25% higher than that of the as-cast one
    corecore