7 research outputs found

    Studies on drought tolerance in maize inbred lines using morphological and molecular approaches

    Get PDF
    A set of hundred homozygous maize inbred lines were analyzed for drought toleranceby studying twenty-four traits related to maturity, morphological, physiological, yield, quality and few root traits. Evaluation confirmed a wide range of variability revealing significant response of main effects (lines, irrigations and years and their respective digenic and trigenic interactions). These lines were subjected to different stress regimes over years leading to identification of fifteen elite lines which performed well under droughtstress showing inbuilt drought tolerance. A set of 32 SSR markers, having genome-wide coverage, were chosen for genotyping the inbred lines. These markers generated a total of 239 polymorphic alleles with an average of 7.47 alleles per locus. The minimum and maximum PIC value was 0.886 and 0.608 with a mean of 0.782. The coefficient of genetic dissimilarity ranged from 0.215 to 0.148. DARwin derived cluster analysis grouped 15 elite maize lines in three major clusters with five lines each in cluster-III and II and four lines in cluster-I with KDM-361A as root. Molecular diversity however, confirmed diverse genetic nature of six lines (KDM-372, KDM-343A, KDM-331, KDM-961, KDM-1051 and KDM-1156) showing drought tolerance. Exploitation of identified elite lines in a crossing program involving all possible combinations would help to develop hybrids with inbuilt mechanism to drought tolerance. Markers viz., umc -1766, umc-1478 and phi-061 recorded PIC >8 and alleles per locus more than 9 and therefore, discriminated the set of lines more efficiently. Genotyping data complemented by morpho- hysiological parameters were used to identify a number of pair-wise combinations for the development of mapping population segregating for drought tolerance and potential heterotic pairs for the development of drought tolerant hybrids.

    Genetic diversity in saffron (Crocus sativus L.)

    Get PDF
    Two hundred saffron genotypes collected from saffron growing areas of Kashmir subjected to Mahalanobis D2 analysis revealed high amount of diversity. Out of 200 genotypes, 171 genotypes were grouped in cluster I, 9 in cluster V and 7 in cluster VI whereas the other 13 clusters were monogenotypic. Maximum intracluster distance (6.50) was recorded for cluster V accommodating SH-21, SH-123, SH-200, SH-51, SH-30, SH-81, SH-69, SH-03, SH-98 genotypes collected from Kushbal, Wuyan, Khrew, Kashbal, Wulan nadh, Kruncho, Dusso, Tang and Darbagh. Maximum intercluster distance (18.14) was recorded between cluster XV and XVI showing maximum genetic divergence among the population for SH-67 collected from Chandhara and SH- 89 collected form Khrew area of Kashmir valley. Fresh stamen weight (20.86%) followed by plant height (17.77%), fresh flower weight (15.31%) and pistil length (9.98%) had contributed significantly towards diversity. &nbsp

    Not Available

    No full text
    Not AvailableAfter harvesting the stigma from saffron flower, the petal part of the flower, which is violet in colour, is thrown as a waste. Pashmina shawl is a very delicate material and requires mild chemical treatments for dyeing. In the present study, an attempt has been made to utilize the petal part of the saffron flower to extract dye for application on the Pashmina shawl. The saffron flower waste was dried and ground into powder form. The natural dye was extracted by aqueous method at boiling conditions. The extracts were then applied on Pashmina wool at two different pH namely pH 4-5 and pH 7-8 with and without the use of mordant. The results showed that saffron flower waste extracts was able to dye the Pashmina shawl satisfactorily with very good washing and light fastness properties. It is also proposed to give an alkaline detergent treatment after dyeing to avoid tone variation of dyed fabric. Saffron flower extract dyed fabric at acidic pH without mordant showed zone of inhibition for the growth against Staphylococcus aureus.Not Availabl

    Fusarium chlamydosporum, causing wilt disease of chili (Capsicum annum L.) and brinjal (Solanum melongena L.) in Northern Himalayas: a first report

    No full text
    Abstract Chili (Capsicum annuum L.) and brinjal (Solanum melongena L.) are the most widely grown solanaceous crops in the world. However, their production has reduced over several years due to the attack of various fungal and bacterial pathogens and various abiotic factors. Still, the major constrain in their production are pathogens with fungal etiology, especially the fungal wilt of solanaceous crops. Fusarium oxysporum and Fusarium solani have been previously identified as the pathogens causing wilt disease in chili and brinjal. Recently, a new fungal pathogen F. equiseti has been reported as the causal agent of wilt disease infecting chili. The current study focused on identifying fungal pathogens associated with the wilted plants of chili and brinjal, collected from different parts of the Himalayan region of Kashmir valley, through morpho-cultural and molecular characterization. DNA extraction, PCR amplification, and sequencing were performed on various isolates. DNA barcoding using the internal transcribed spacer region (ITS) was used to identify the pathogen followed by the pathogenicity test. Further confirmation of the pathogen was done by sequencing of transcription elongation factor (TEF) and Calmodulin (CAL2). In current study Fusarium chlamydosporum has been reported as the wilt causing pathogen of chili and brinjal for the first time in Kashmir Himalayas
    corecore