37 research outputs found

    Exercise and functional foods

    Get PDF
    Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise

    Interleukins and exercise

    No full text

    Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans

    No full text
    Plasma interleukin-6 (IL-6) concentration has been shown to increase with exercise and various cell types and tissues have been suggested to be responsible for this increase. At present no studies have measured the interstitial concentration of IL-6 in skeletal muscle and connective tissue. The present study represents the first attempt to simultaneously measure IL-6 in plasma, skeletal muscle and peritendinous connective tissue in response to prolonged exercise. Six healthy well-trained volunteers completed a 36 km run (flat, 12 km h−1). IL-6 was measured before, 2 h post-exercise and 24 h, 48 h, 72 h and 96 h post-exercise in both the medial gastrocnemius muscle (not measured at rest due to risk of disabling the subsequent exercise, and 24 h and 72 h post-exercise) and the peritendinous tissue around the Achilles tendon using microdialysis catheters with a high molecular mass cut-off value (3000 kDa). The plasma concentration of IL-6 was measured simultaneously, and in addition every hour during the exercise, by enzyme-linked immunosorbent assay (ELISA). The plasma concentration of IL-6 was found to increase throughout the exercise, reaching peak values immediately after completion of the run (50-fold increase). Using the microdialysis technique, the interstitial concentration of IL-6 was found to increase dramatically from 0 ± 0 pg ml−1 to 3618 ± 1239 pg ml−1 in the peritendinous tissue in the hours following the exercise. The pattern of changes was similar in plasma and peritendinous tissue, although approximately 100-fold higher in the latter. For comparison the interstitial muscle concentration was found to be 465 ± 176 pg ml−1 when measured 2 h post-exercise and 223 ± 113 pg ml−1 and 198 ± 96 pg ml−1 48 h and 96 h post-exercise, respectively. The present study demonstrates that the connective tissue around the human Achilles tendon produces significant amounts of IL-6 in response to prolonged physical activity, which might contribute to the exercise-induced increase in IL-6 found in plasma

    Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans

    No full text
    The present study investigates to what extent and by which time course prolonged strenuous exercise influences the plasma concentration of pro-inflammatory and inflammation responsive cytokines as well as cytokine inhibitors and anti-inflammatory cytokines.Ten male subjects (median age 27.5 years, range 24–37) completed the Copenhagen Marathon 1997 (median running time 3:26 (h:min), range 2:40–4:20). Blood samples were obtained before, immediately after and then every 30 min in a 4 h post-exercise recovery period.The plasma concentrations of tumour necrosis factor (TNF)α, interleukin (IL)-1β, IL-6, IL-1ra, sTNF-r1, sTNF-r2 and IL-10 were measured by enzyme-linked immunosorbent assay (ELISA). The highest concentration of IL-6 was found immediately after the race, whereas IL-1ra peaked 1 h post exercise (128-fold and 39-fold increase, respectively, as compared with the pre-exercise values). The plasma level of IL-1β, TNFα, sTNF-r1 and sTNF-r2 peaked in the first hour after the exercise (2.1-, 2.3-, 2.7- and 1.6-fold, respectively). The plasma level of IL-10 showed a 27-fold increase immediately post exercise.In conclusion, strenuous exercise induces an increase in the pro-inflammatory cytokines TNFα and IL-1β and a dramatic increase in the inflammation responsive cytokine IL-6. This is balanced by the release of cytokine inhibitors (IL-1ra, sTNF-r1 and sTNF-r2) and the anti-inflammatory cytokine IL-10. The study suggests that cytokine inhibitors and anti-inflammatory cytokines restrict the magnitude and duration of the inflammatory response to exercise

    Immune Function in Marathon Runners Versus Sedentary Controls

    No full text
    Marathon runners (N = 22) who had completed at least seven marathons (X ± SEM = 23.6 ± 5.7) and had been training for marathon race events for at least 4 yr (12.3 ± 1.3) were compared with sedentary controls (N = 18). Although the two groups were of similar age (38.7 ± 1.5 and 43.9 ± 2.2 yr, respectively) and height, the marathon runners were significantly leaner and possessed a VO2max 60% higher than that of the controls. Neutrophil counts tended to be lower in the group of marathoners, while other leukocyte and lymphocyte subsets were similar to controls. Mitogen-induced lymphocyte proliferation did not differ between groups. Natural killer cell cyto-toxic activity (NKCA) was significantly higher in the marathoners versus controls (373 ± 38 vs 237 ± 41 total lytic units, respectively, a 57% difference, P = 0.02). For all subjects combined (N = 40) and within the group of marathon runners (N — 22), percent body fat was negatively correlated with NKCA (r = -0.48, P = 0.002; r = -0.49, P = 0.019, respectively), and age was negatively correlated with Con A-induccd lymphocyte proliferation (r = -0.41, P = 0.009; r = -0.53, P = 0.011, respectively). These data indicate that NKCA but not mitogen-induced lymphocyte proliferation is higher in marathon runners relative to sedentary controls
    corecore