36 research outputs found
Relativistic peculiarities at stepped surfaces: surprising energetics and unexpected diffusion patterns
We revive intriguing, yet still unexplained, experimental results of Ehrlich
and co-workers [ Phys. Rev. Lett. 77 1334 (1996); Phys. Rev. Lett. 67 2509
(1991)] who have observed, that 5d adatoms distributed on (111) surface islands
of 5d metals favor the adsorption at the cluster's edge rather than at the
cluster's interior, which lies in contrast with the behavior of 4d and 3d
elements. Our state of the art ab initio calculations demonstrate that such
behavior is a direct consequence of the relativity of 5d metals.Comment: 5 pages, 5 figure
Direct Evidence for the Effect of Quantum Confinement of Surface-State Electrons on Atomic Diffusion
Regulation of Sodium Channel Activity by Capping of Actin Filaments
Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells