34 research outputs found

    Advances in Agrobacterium-mediated plant transformation with enphasys on soybean

    Full text link

    Noninvasive quantitative evaluation of the dentin layer during dental procedures using optical coherence tomography

    Get PDF
    A routine cavity preparation of a tooth may lead to opening the pulp chamber. The present study evaluates quantitatively, in real time, for the first time to the best of our knowledge, the drilled cavities during dental procedures. An established noninvasive imaging technique, Optical Coherence Tomography (OCT), is used. The main scope is to prevent accidental openings of the dental pulp chamber. Six teeth with dental cavities have been used in this ex vivo study. The real time assessment of the distances between the bottom of the drilled cavities and the top of the pulp chamber was performed using an own assembled OCT system. The evaluation of the remaining dentin thickness (RDT) allowed for the positioning of the drilling tools in the cavities in relation to the pulp horns. Estimations of the safe and of the critical RDT were made; for the latter, the opening of the pulp chamber becomes unavoidable. Also, by following the fractures that can occur when the extent of the decay is too large, the dentist can decide upon the right therapy to follow, endodontic or conventional filling. The study demonstrates the usefulness of OCT imaging in guiding such evaluations during dental procedures

    Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system

    No full text
    A fast swept-source optical coherence tomography (SS-OCT) system is employed to acquire volumes of dental tissue, in order to monitor the temporal evolution of dental wear. An imaging method is developed to evaluate the volume of tissue lost in ex vivo artificially induced abfractions and attritions. The minimal volume (measured in air) that our system could measure is 2352 Ïm3. A volume of 25,000 A-scans is collected in 2.5 s. All these recommend the SS-OCT method as a valuable tool for dynamic evaluation of the abfraction and attrition with remarkable potential for clinical use. © The Authors

    3D reconstructions of resin dental fillings based on en face OCT images

    No full text
    Optical tomographic techniques are of particular importance in the medical imaging field, because these techniques can provide non-invasive diagnostic images. In the present study, en-face optical coherence tomography (efOCT) was used as a non-invasive high resolution imaging method for supplying the necessary information on the quality of dental hard tissues and coronal composite resin fillings. Teeth after being subject to several treatment methods are imaged in order to asses the material defects and micro-leakage of tooth-filling interface as well as to evaluate the quality of dental hard tissue. C-scan and B-scan OCT images are acquired from a large range of samples. Based on such images, 3D reconstructions were assembled, which lead to a better view of the investigated areas. Cracks and voids in the dental structures as well as material defects and gaps at the interfaces are clearly exposed. The advantages of the OCT imaging method consist in non-invasiveness and high resolution. The en-face OCT offers the user the possibility of rapidly acquiring sequential B-scans and C-scans by switching the instrument between the two regimes. Sequential and rapid switching between the en-face regime and the cross-section regime, specific for the en-face OCT systems, represent a significant advantage in the process of non-invasive imaging, as images with different orientations can be obtained using the same system, during the same imaging event. 3D reconstructions of volumes allow evaluation and localization of defects in the samples. By importing such data into numerical simulation software can provide answers on the behavior of the investigated structures

    Orthodontic bonding of tooth colored brackets from a different perspective: An optical coherence tomography investigation

    No full text
    Bracket bonding has become routine procedure in fixed orthodontics over the past couple of decades. The choice whether to receive ceramic or polycarbonate brackets is mainly the patient's but the issues related to bonding them are part of the practitioner's responsibility. Recurrent bracket debonding can unduly prolong treatment or even lead to compromised results. Therefore, we collected human extracted premolars and bonded them with aesthetic brackets and investigated them by a new, non-invasive method - optical coherence tomography (OCT) in order to assess the quality of the bracket-tooth interface. The OCT investigation revealed a series of gaps within the adhesive at the bracket-tooth interface

    En-Face optical coherence tomography combined with fluorescence in material defects investigations for ceramic fixed partial dentures

    No full text
    Optical Coherence Tomography (OCT) combined with the Confocal Microscopy, as a noninvasive method, permits the determinations of materials defects in the ceramic layers depth. For this study 256 anterior and posterior metal and integral ceramic fixed partial dentures were used, made with Empress (Ivoclar), Wollceram and CAD/CAM (Wieland) technology. For each investigate area 350 slices were obtain and a 3D reconstruction was perform from each stuck. The Optical Coherent Tomography, as a noninvasive method, can be used as a control technique in integral ceramic technology, before placing those fixed partial dentures in the oral cavity. The purpose of this study is to evaluate the capability of En face Optical Coherence Tomography (OCT) combined with a fluorescent method in detection and analysis of possible material defects in metalceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function

    Occlusal overload investigations by non invasive technology: Fluorescence microscopy and en-face optical coherence tomography

    No full text
    The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-Face Optical coherence tomography (eF-OCT) and fluorescence microscopy (FM) were used for the imaging of several anterior teeth extracted from patients with light active bruxism. We found a characteristic pattern of enamel cracks, that reached the tooth surface. We concluded that the combination of the en-Face OCT and FM is a promising non-invasive alternative technique for reliable monitoring of occlusal overload

    Optical investigations of various polymeric materials used in dental technology

    No full text
    Dental prosthetic restorations have to satisfy high stress as well as aesthetic requirements. In order to avoid deficiencies of dental prostheses, several alternative systems and procedures were imagined, directly related to the material used and also to the manufacturing technology. Increasing the biomechanical comportment of polymeric materials implies fiber reinforcing. The different fibers reinforcing products made very difficult the evaluation of their performances and biomechanical properties analysis. There are several known methods which are used to assess the quality of dental prostheses, but most are invasive. These lead to the destruction of the samples and often no conclusion could be drawn in the investigated areas of interest. Using a time domain en-face OCT system, we have recently demonstrated real time thorough evaluation of quality of various dental treatments. The aim of this study was to assess the quality of various polymeric materials used in dental technology and to validate the en face OCT imagistic evaluation of polymeric dental prostheses by using scanning electron microscopy (SEM) and microcomputer tomography (ĂŽÂŒCT). SEM investigations evidenced the nonlinear aspect of the interface between the polymeric material and the fiber reinforcement and materials defects in some samples. The results obtained by microCT revealed also some defects inside the polymeric materials and at the interfaces with the fiber reinforcement. The advantages of the OCT method consist in non-invasiveness and high resolution. In addition, en face OCT investigations permit visualization of the more complex stratified structure at the interface between the polymeric material and the fiber reinforcement

    Optical coherence tomography and confocal microscopy investigations of dental prostheses

    No full text
    Dental prostheses are very complex systems, heterogenous in structure, made up from various materials, with different physical properties. An essential question mark is on the physical, chemical and mechanical compatibility between these materials. They have to satisfy high stress requirements as well as esthetic challenges. The masticatory stress may inducefractures of the prostheses, which may be triggered by initial materials defects or by alterations of the technological process. The failures of dental prostheses lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of en-face optical coherence tomography as a possible non-invasive high resolution method in supplying the necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed. We conclude that OCT can successfully be used as a noninvasive analysis method

    Optical imaging of oral squamous cell carcinoma using optical coherence tomography and micro CT

    No full text
    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival and to reduce diagnostic delay. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method. OCT represents a new high-resolution optical technique that permits 3D, real-time imaging of near surface abnormalities in complex tissues. In the present study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT and Micro-CT investigation. For the OCT imaging it was used an OCT prototype (1300 nm), Synchrotron Radiation Micro-CT and histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images by the disruption of the basement membrane, an epithelial layer that was highly variable in thickness, with areas of erosion, extensive epithelial down-growth and invasion into the sub-epithelial layers. In this respect, OCT seems to be a highly promising imaging modality. © (2014) Trans Tech Publications, Switzerland
    corecore