4 research outputs found

    О Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΊΡ€Π°Π΅Π²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ расчСта конструкций Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ постановкС Π½Π° основС совмСстного примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов. Π§Π°ΡΡ‚ΡŒ 1: ΠŸΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΊΠ° ΠΈ ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ аппроксимации Π·Π°Π΄Π°Ρ‡

    No full text
    The distinctive paper is devoted to formulation and basic principles of approximation of multipoint boundary problem of static analysis of three-dimensional structure with the use of combined application of finite element method and discrete-continual finite element method. Basic notation system, design model, general formulation of the problem (based on three-dimensional theory of elasticity), basic principles of domain approximation, rule of numbering of subdomains, rule of numbering of finite elements, rule of numbering of discrete-continual finite elements are considered. Construction of discrete (finite element) and discrete-continual approximation models for subdomains is under consideration as well.Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ постановка ΠΈ ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ аппроксимации ΠΌΠ½ΠΎΠ³ΠΎΡ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ ΠΊΡ€Π°Π΅Π²ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ статичСского расчСта Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ конструкции Π½Π° основС совмСстного примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов. Π’ частности, описаны основныС обозначСния ΠΈ соглашСния, прСдставлСны расчСтная модСль ΠΈ общая постановка Π·Π°Π΄Π°Ρ‡ΠΈ (Π½Π° основС Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ упругости), ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ аппроксимации области, принятыС ΠΏΡ€Π°Π²ΠΈΠ»Π° Π½ΡƒΠΌΠ΅Ρ€Π°Ρ†ΠΈΠΈ подобластСй, ΠΏΡ€Π°Π²ΠΈΠ»Π° Π½ΡƒΠΌΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов; описано построСниС дискрСтной (конСчноэлСмСнтной) ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΏΠΏΡ€ΠΎΠΊΡΠΈΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° подобластях

    Solution of boundary problems of structural mechanics with the combined application use of Discrete-Continual Finite Element Method and Finite Element Method

    No full text
    In most structural problems the object is usually to find the distribution of stress in elastic body produced by an external loading system. The theory of elasticity is a methodology that creates a linear relation between the imposing force (stress) and resulting deformation (strain), for the majority of materials, which behave fully or partially elastically. This paper is devoted to combined semianalytical and numerical static analysis of three-dimensional structures. The stress-strain or constitutive behavior is given for isotropic materials. Solution of multipoint (particularly, two-point) boundary problem of three-dimensional elasticity theory based on combined application of finite element method (FEM) and discrete-continual finite element method (DCFEM) is under consideration. The given domain, occupied by structure, is embordered by extended one within method of extended domain. The application field of DCFEM comprises fragments of structure (subdomains) with regular (constant or piecewise constant) physical and geometrical parameters in some dimension ("basic" dimension). DCFEM presupposes finite element mesh approximation for non-basic dimensions of extended domain while in the basic dimension problem remains continual (corresponding correct analytical solution is constructed). FEM is used for approximation of all other subdomains. Discrete (within FEM) and discrete-continual (within DCFEM) approximation models for subdomains and coupled multilevel approximation model for extended domain are constructed. Β© Published under licence by IOP Publishing Ltd

    О Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΊΡ€Π°Π΅Π²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ расчСта конструкций Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ постановкС Π½Π° основС совмСстного примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов. Π§Π°ΡΡ‚ΡŒ 1: ΠŸΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΊΠ° ΠΈ ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ аппроксимации Π·Π°Π΄Π°Ρ‡

    No full text
    The distinctive paper is devoted to formulation and basic principles of approximation of multipoint boundary problem of static analysis of three-dimensional structure with the use of combined application of finite element method and discrete-continual finite element method. Basic notation system, design model, general formulation of the problem (based on three-dimensional theory of elasticity), basic principles of domain approximation, rule of numbering of subdomains, rule of numbering of finite elements, rule of numbering of discrete-continual finite elements are considered. Construction of discrete (finite element) and discrete-continual approximation models for subdomains is under consideration as well.Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ постановка ΠΈ ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ аппроксимации ΠΌΠ½ΠΎΠ³ΠΎΡ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ ΠΊΡ€Π°Π΅Π²ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ статичСского расчСта Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ конструкции Π½Π° основС совмСстного примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов. Π’ частности, описаны основныС обозначСния ΠΈ соглашСния, прСдставлСны расчСтная модСль ΠΈ общая постановка Π·Π°Π΄Π°Ρ‡ΠΈ (Π½Π° основС Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ упругости), ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ аппроксимации области, принятыС ΠΏΡ€Π°Π²ΠΈΠ»Π° Π½ΡƒΠΌΠ΅Ρ€Π°Ρ†ΠΈΠΈ подобластСй, ΠΏΡ€Π°Π²ΠΈΠ»Π° Π½ΡƒΠΌΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов; описано построСниС дискрСтной (конСчноэлСмСнтной) ΠΈ дискрСтно-ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΏΠΏΡ€ΠΎΠΊΡΠΈΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° подобластях

    Numerical simulation of loads and impacts, stress-strain state, strength and stability of unique structures, buildings and facilities. Experience of StaDyO research & engineering centre

    No full text
    The paper contains analytical overview of the most important unique/critical objects and the computational analysis problems of the mechanical safety, carried out by the team of Research & Development Centre StaDyO (StaDyO R&D Centre) researchers for the last two years (2016-2018). Corresponding complex coupled problems of continuum mechanics were solved with the use of contemporary methods and models of numerical modeling (nonlinear models, coupled problems, substructures, submodeling, etc.), implemented in verified software complexes. Some of these results are briefly considered and analyzed. Conclusions about the main directions of further research and development are presented as well. Β© Published under licence by IOP Publishing Ltd
    corecore