19 research outputs found

    A MATLAB SMO implementation to train a SVM classifier: Application to multi-style license plate numbers recognition

    Get PDF
    This paper implements the Support Vector Machine (SVM) training procedure proposed by John Platt denominated Sequential Minimimal Optimization (SMO). The application of this system involves a multi-style license plate characters recognition identifying numbers from “0” to “9”. In order to be robust against license plates with different character/background colors, the characters (numbers) visual information is encoded using Histograms of Oriented Gradients (HOG). A reliability measure to validate the system outputs is also proposed. Several tests are performed to evaluate the sensitivity of the algorithm to different parameters and kernel functions.Fil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentin

    Perception visuelle du geste de préhension

    Get PDF
    Nous présentons dans cet article, un nouvel algorithme de traitement d'images, la "Transformée Chinoise", permettant d'estimer la localisation des doigts d'une main. Cette approche utilise une technique inspirée de la Transformée de Hough qui prend en compte la disposition des pixels de contour ainsi que l'orientation du gradient en ces pixels. Elle a été intégrée dans un système d'acquisition visuelle monoculaire des gestes humains de préhension

    Vehicle make and model identification using vision system

    Get PDF
    Cet article présente un système de reconnaissance du type (constructeur, modèle) de véhicules par vision. À partir d’une vue de face avant d’un véhicule, limitée à sa calandre, nous en construisons une représentation à base de points de contour orientés. La classification est réalisée essentiellement en se fondant sur des algorithmes de votes. L’utilisation d’algorithmes de votes permet au système d’être robuste aux données manquantes ou erronées de la représentation. Nous avons donc construit une fonction de discrimination qui combine 3 votes et une distance, et agit comme une mesure de similarité entre chaque modèle et l’image de véhicule testée. Deux stratégies de décision ont été testées. La première associe à une image de calandre avant du véhicule, le modèle qui a obtenu la valeur la plus importante en sortie de la fonction. Une seconde stratégie regroupe toutes les sorties en un vecteur. La décision est alors prise via un algorithme de plus proche voisin dans un espace dit de votes. Avec la première stratégie, un taux de reconnaissance de 93 % est obtenu sur une base d’images prises en conditions réelles composée de 20 classes de type de véhicules. De plus, une caractérisation et une analyse du fonctionnement du système vis-à-vis de ses différents paramètres est proposée. Cependant ce taux chute à 80 % lorsque le nombre de modèles passe à 50 classes. Pour le même nombre de classes, la seconde stratégie permet d’obtenir un taux supérieur à 90 %.Many vision based Intelligent Transport Systems are dedicated to detect, track or recognize vehicles in image sequences. Three main applications can be distinguished. Firstly, embedded cameras allow to detect obstacles and to compute distances from the equiped vehicle. Secondly, road monitoring measures traffic flow, notifies the health services in case of an accident or informes the police in case of a driving fault. Finally, Vehicle based access control systems for buildings or outdoor sites have to authentify incoming (or outcoming) cars. Rather than these two systems, the third one uses often only the recognition of a small part of vehicle: the license plate. It is enough to identify a vehicle, but in practice the vision based number plate recognition system can provide a wrong information, due to a poor image quality or a fake plate. Combining such systems with others process dedicated to identify vehicle type (brand and model) the authentication can be increased in robustness. This paper adresses the identification problem of a vehicle type from a vehicle greyscale frontal image: the input of the system is an unknown vehicle class, that the system has to determine from a data base. This multiclass recognition system is developed using the oriented-contour pixels to represent each vehicle class. The system analyses a vehicle frontal view identifying the instance as the most similar model class in the data base. The classification is based on voting process and a Euclidean edge distance. The algorithm have to deal with partial occlusions. Tollgates hide a part of the vehicle and making inadequate the appearance-based methods. In spite of tollgate presence, our system doesn’t have to change the training base or apply time-consuming reconstruction process.Fil: Clady, Xavier. Université Pierre et Marie Curie-Paris 6. Institut des Systèmes Intelligents et de Robotique; FranciaFil: Negri, Pablo Augusto. Université Pierre et Marie Curie-Paris 6. Institut des Systèmes Intelligents et de Robotique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Milgram, Maurice. Université Pierre et Marie Curie-Paris 6. Institut des Systèmes Intelligents et de Robotique; FranciaFil: Poulenard, Raphael. LPREditor; Franci

    Reconnaissance multiclasses de type de véhicules à l'aide d'algorithme de votes sur des contours orientés

    Get PDF
    Cette communication présente un système de reconnaissance du type (constructeur, modèle) de véhicules par vision. A partir d'une vue de face avant d'un véhicule, nous construisons une représentation de celle-ci basée sur les points de contour orientés. La classification est réalisée essentiellement en se fondant sur des algorithmes de votes. La classe d'un véhicule est déterminée selon celle de son plus proche voisin dans l'espace des votes. Plusieurs résultats effectués sur des bases d'images prises en conditions réelles (contenant 50 types de véhicules différents) sont présentés et analysés: le taux de reconnaissance dépasse les 90%

    Estimating the queue length at street intersections by using a movement feature space approach

    Get PDF
    This study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.Fil: Negri, Pablo Augusto. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Détection et reconnaissance d'objets structurés (application aux transports intelligents)

    No full text
    Cette thèse est dédiée à l'étude de méthodes de vision artificielle pour la détection et la reconnaissance d'objets structurés, plus précisément les véhicules automobiles. La première partie est vouée à la détection de véhicules sur des scènes routières à l'aide d'un système embarqué de vision monoculaire. La stratégie utilisée se fonde sur une cascade de classifieurs de type Adaboost qui permet la concaténation des fonctions de classification discriminantes et génératives. Nous avons proposé aussi des méthodes pour classifier les véhicules détectés. La deuxième partie est consacrée à la reconnaissance du type d'un véhicule (constructeur, modèle) à partir de sa vue de face. L'application principale visée est le contrôle d'accès dans des parkings ou péages d'autoroutes. Le système système de reconnaissance multi-classes utilise un descripteur visuel local, à base de pixels de contour orientés. La classification est obtenue à partir d'une méthode de votes, robuste aux occultations partielles.PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Detecting pedestrians on a Movement Feature Space

    Get PDF
    This work aims at detecting pedestrians in surveillance video sequences. A pre-processing step detects motion regions on the image using a scene background model based on level lines, which generates a Movement Feature Space, and a family of oriented histogram descriptors. A cascade of boosted classifiers generates pedestrian hypotheses using this feature space. Then, a linear Support Vector Machine validates the hypotheses that are likeliest to contain a person. The combination of the three detection phases reduces false positives, preserving the majority of pedestrians. The system tests conducted in our dataset, which contain low-resolution pedestrians, achieved a maximum performance of 25.5% miss rate with a rate of 10−1 false positives per image. This value is comparable to the best detection values for this kind of images. In addition, the processing time is between 2 and 6 fps on 640 480 pixel captures. This is therefore a fast and reliable pedestrian detector.Fil: Negri, Pablo Augusto. Universidad Arg.de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A cascade detector for text detection in natural scene images

    No full text
    In this paper, we present a text detection and localization method. Our detection technique is based on a cascade of boosted ensemble and localizer uses standard image processing techniques. We propose a small set of features (39 in total) capable of detecting various type of text in grey level natural scene images. Two weak learners, linear discriminant function and log likelihood-ratio test under gaussian assumption, are evaluated. Single features and combination of features are used to form weak classifiers. The proposed scheme is evaluated on ICDAR 2003 robust reading and text locating database. The results are encouraging and the detector can process an images of 640x480 pixels in less than 2 seconds. 1

    Experimental characterization of collision avoidance in pedestrian dynamics

    Get PDF
    In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models.Fil: Parisi, Daniel Ricardo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Negri, Pablo Augusto. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bruno, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Toward making canopy hemispherical photography independent of illumination conditions: A deep-learning-based approach

    No full text
    Hemispherical photography produces the most accurate results when working with well-exposed photographs acquired under diffuse light conditions (diffuse-light images). Obtaining such data can be prohibitively expensive when surveying hundreds of plots is required. A relatively inexpensive alternative is using photographs acquired under direct sunlight (sunlight images). However, this practice leads to high errors since the standard processing algorithms expect diffuse-light imagery. Here, instead of using classification algorithms, which is the unique dominant practice, we approached the processing of sunlight images using deep learning (DL) regression. We implemented DL systems by using the general-purpose convolutional neural networks known as VGGNet 16, VGGNet 19, Res-Net, and SE-ResNet. We trained them with 608 samples acquired in a South American temperate forest populated by Nothofagus pumilio. For their evaluation, we used 113 independent samples. Each sample (X, Y) consisted of one or several sunlight images (X), and the plant area index (PAI) and effective PAI (PAIe) extracted from a diffuse-light image (Y). The sunlight images include clear sky and broken clouds with sun elevation from 15° to 47°. We obtained the best results with the SE-ResNet architecture. The system requires a low-resolution input reprojected to cylindrical, and it can make predictions with 10% root mean square error, even from pictures acquired with automatic exposure, which challenge previous findings. Furthermore, similar results (R2= 0.9, n = 104) can be obtained by feeding the system with photographs acquired with an inexpensive fisheye converter attached to a smartphone. Altogether, results indicate that our approach is a cost-efficient option for surveying hundreds of plots under direct sunlight. Therefore, combining our method with the traditional procedures provides processing solutions for virtually all kinds of illumination conditions.Fil: Díaz, Gastón Mauro. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; Argentin
    corecore