150 research outputs found

    Vitrectomy for endophthalmitis: 5-year study of outcomes and complications

    Get PDF
    Background/Aims: To analyse the complications and outcomes of vitrectomy surgery for endophthalmitis. Methods This was a retrospective case series. All cases that underwent 23-gauge vitrectomy surgery for endophthalmitis at a tertiary centre between 1 February 2013 and 1 February 2018 were included. Main outcome measures were as follows: visual acuity (VA) at final visit and post-vitrectomy complications. / Results: 33 patients were included in the study with 20 men and 13 women, average age 63 years. Main post-surgical causes for endophthalmitis included phacoemulsification (n=9), trabeculectomy (n=5), intravitreal injection (n=5), corneal graft (n=4), vitreoretinal surgery (n=3) and endogenous endophthalmitis (n=6). Average follow-up was 18 months (SD 14). 21/33 (64%) patients had baseline perception of light VA. Analysis of exogenous endophthalmitis cases only demonstrated: mean LogMAR VA improved significantly from 2.68 to 1.66 (p=0.001). At final follow-up, 12% had VA of 6/12 or better, and 28% had VA of 6/36 or better. Vitrectomy within 7 days resulted in improved final VA outcomes (1.49 vs 2.16 LogMAR, p=0.032). Complications included retinal detachment (24.2%), macular hole (3%), hypotony (6%), suprachoroidal haemorrhage (3%) and enucleation/ evisceration (6%). / Conclusion: Vitrectomy for endophthalmitis leads to VA gains in some cases. Surgical outcomes may be improved with early vitrectomy performed within 7 days of the initial event for exogenous endophthalmitis. Patients should be advised of the potential risk of severe complications with/ and without surger

    Atomic quantum superposition state generation via optical probing

    Full text link
    We analyze the performance of a protocol to prepare an atomic ensemble in a superposition of two macroscopically distinguishable states. The protocol relies on conditional measurements performed on a light field, which interacts with the atoms inside an optical cavity prior to detection, and we investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally applicable.Comment: 10 pages, 9 figure

    Asymmetric double-well potential for single atom interferometry

    Full text link
    We consider the evolution of a single-atom wavefunction in a time-dependent double-well interferometer in the presence of a spatially asymmetric potential. We examine a case where a single trapping potential is split into an asymmetric double well and then recombined again. The interferometer involves a measurement of the first excited state population as a sensitive measure of the asymmetric potential. Based on a two-mode approximation a Bloch vector model provides a simple and satisfactory description of the dynamical evolution. We discuss the roles of adiabaticity and asymmetry in the double-well interferometer. The Bloch model allows us to account for the effects of asymmetry on the excited state population throughout the interferometric process and to choose the appropriate splitting, holding and recombination periods in order to maximize the output signal. We also compare the outcomes of the Bloch vector model with the results of numerical simulations of the multi-state time-dependent Schroedinger equation.Comment: 9 pages, 6 figure

    Nonlinearity-assisted quantum tunneling in a matter-wave interferometer

    Full text link
    We investigate the {\em nonlinearity-assisted quantum tunneling} and formation of nonlinear collective excitations in a matter-wave interferometer, which is realised by the adiabatic transformation of a double-well potential into a single-well harmonic trap. In contrast to the linear quantum tunneling induced by the crossing (or avoided crossing) of neighbouring energy levels, the quantum tunneling between different nonlinear eigenstates is assisted by the nonlinear mean-field interaction. When the barrier between the wells decreases, the mean-field interaction aids quantum tunneling between the ground and excited nonlinear eigenstates. The resulting {\em non-adiabatic evolution} depends on the input states. The tunneling process leads to the generation of dark solitons, and the number of the generated dark solitons is highly sensitive to the matter-wave nonlinearity. The results of the numerical simulations of the matter-wave dynamics are successfully interpreted with a coupled-mode theory for multiple nonlinear eigenstates.Comment: 11 pages, 6 figures, accept for publication in J. Phys.

    Theoretical analysis of the implementation of a quantum phase gate with neutral atoms on atom chips

    Full text link
    We present a detailed, realistic analysis of the implementation of a proposal for a quantum phase gate based on atomic vibrational states, specializing it to neutral rubidium atoms on atom chips. We show how to create a double--well potential with static currents on the atom chips, using for all relevant parameters values that are achieved with present technology. The potential barrier between the two wells can be modified by varying the currents in order to realize a quantum phase gate for qubit states encoded in the atomic external degree of freedom. The gate performance is analyzed through numerical simulations; the operation time is ~10 ms with a performance fidelity above 99.9%. For storage of the state between the operations the qubit state can be transferred efficiently via Raman transitions to two hyperfine states, where its decoherence is strongly inhibited. In addition we discuss the limits imposed by the proximity of the surface to the gate fidelity.Comment: 9 pages, 5 color figure

    Errors in quantum optimal control and strategy for the search of easily implementable control pulses

    Full text link
    We introduce a new approach to assess the error of control problems we aim to optimize. The method offers a strategy to define new control pulses that are not necessarily optimal but still able to yield an error not larger than some fixed a priori threshold, and therefore provide control pulses that might be more amenable for an experimental implementation. The formalism is applied to an exactly solvable model and to the Landau-Zener model, whose optimal control problem is solvable only numerically. The presented method is of importance for applications where a high degree of controllability of the dynamics of quantum systems is required.Comment: 13 pages, 3 figure

    Collisional-inhomogeneity-induced generation of matter-wave dark solitons

    Get PDF
    We propose an experimentally relevant protocol for the controlled generation of matter-wave dark solitons in atomic Bose-Einstein condensates (BECs). In particular, using direct numerical simulations, we show that by switching-on a spatially inhomogeneous (step-like) change of the s-wave scattering length, it is possible to generate a controllable number of dark solitons in a quasi-one-dimensional BEC. A similar phenomenology is also found in the two-dimensional setting of "disk-shaped" BECs but, as the solitons are subject to the snaking instability, they decay into vortex structures. A detailed investigation of how the parameters involved affect the emergence and evolution of solitons and vortices is provided.Comment: 8 pages, 5 Figures, Physics Letters A (in press

    Characterization of meloidogyne species from irrigated rice in southern Brazil.

    Get PDF
    Edição dos Proceedings do 6th International Congress of Nematology, Cape Town, South Africa, May 2014

    Hidden expectations: Scaffolding subject specialists' genre knowledge of the assignments they set

    Get PDF
    Subject specialists’ knowledge of academic and disciplinary literacy is often tacit. We tackle the issue of how to elicit subject specialists’ tacit knowledge in order to develop their pedagogical practices and enable them to communicate this knowledge to students. Drawing on theories of genre and metacognition, a professional development activity was designed and delivered. Our aims were to (1) build participants’ genre knowledge and (2) scaffold metacognitive awareness of how genre knowledge can enhance their pedagogical practices. The findings reveal that participants built a genre-based understanding of academic literacy and that the tasks provided them with an accessible framework to articulate and reflect upon their knowledge of disciplinary literacy. Participants gained metacognitive awareness of misalignments between what they teach and what they expect from students, their assumptions about students’ prior learning and genre-based strategies to adapt their practice to students’ needs. Our approach provides a theoretically grounded professional development tool for the HE sector
    • 

    corecore