35 research outputs found

    Radiation Induced Oxidation Reactions of Ferrous Ions: An Agent-based Model

    Get PDF
    Chemical Fricke dosimeter in the laboratory can be submitted to gamma radiation at low temperatures to study the evolution of oxidation reactions induced by radiation, a key process to understand the formation of complex molecules. Products generated by the interaction of the different elements under radiation can be determined through a mathematical model that considers chemical reactions as coupled nonlinear ordinary differential equations involving the mass balance of all the species in the reaction. In this paper is implemented an alternative way of solving this system of equations, species’ concentrations are calculated through an agent-based model implemented in Python. The model is a modified version of the prey-predator model where each chemical specie involved is considered as an agent that can interact with other specie with known reaction rates leading to production (source terms) and to destruction (sink terms). Here, the radiation is a factor that affects product formation while the bath temperature modifies the reaction speed. This model can reproduce experimental concentrations of products and the consumption of ferrous ions from a laboratory reaction of irradiation of iron salt solutions at 3 different temperatures (dry ice, liquid nitrogen, and room temperature)

    Gamma Irradiation of Aqueos Solution of L-Aspartic Acid, L-Aspartic Acid in Solid State, and L-Aspartic Acid Adsorbed into Na-Montmorillonite: Its Relevance in Chemistry Prebiotic

    Get PDF
    Aspartic acid is an amino acid present in the modern proteins, however, is considered a primitive amino acid hence its importance in prebiotic chemistry experiments studies. In some works of prebiotic chemistry have been studied the synthesis and the stability of organic matter under high energy sources, and the role of clays has been highlighted due to clays that can affect the reaction mechanisms in the radiolytic processes. The present work is focused on the study of the role of Namontmorillonite in the gamma radiolysis processes of L-aspartic acid. Gamma radiolysis processes were carried out in three different systems a) L-aspartic acid in aqueous solution; b) L-aspartic acid in solid-state; and c) L-aspartic acid adsorbed into Na-montmorillonite. L-aspartic acid was analyzed by high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLCESI-MS). The results showed that the decomposition of L-aspartic acid considerably decreased in the presence of clay thus highlighting the protector role of clays and favors the stability of organic matter even under the possible high energy conditions of primitive environments. The principal product ofgamma radiolysis of L-aspartic acid was succinic acid produced by deamination reaction. On the other hand, when aspartic acid was irradiated in solid-state the main product was the L-aspartic acid dimer. Both radiolysis products are important for chemical evolution processes for L-aspartic acid in primitive environments
    corecore