119 research outputs found

    Gluon contributions to the pion mass and light cone momentum fraction

    Full text link
    We calculate the matrix elements of the gluonic contributions to the energy-momentum tensor for a pion of mass 600 < Mpi < 1100 MeV in quenched lattice QCD. We find that gluons contribute (37 +/- 8 +/- 12)% of the pion's light cone momentum. The bare matrix elements corresponding to the trace anomaly contribution to the pion mass are also obtained. The discretizations of the energy-momentum tensor we use have other promising applications, ranging from calculating the origin of hadron spin to QCD thermodynamics.Comment: 4 pages, 2 figure

    Exploring quark transverse momentum distributions with lattice QCD

    Full text link
    We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connected by a straight Wilson line, allowing us to study T-even, "process-independent" TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and transverse momentum. Our calculations are based on domain wall valence quark propagators by the LHP collaboration calculated on top of gauge configurations provided by MILC with 2+1 flavors of asqtad-improved staggered sea quarks.Comment: 36 pages, 24 figures; revised version of May 2011, one appendix adde

    Exploring the transition into the Chiral Regime of QCD using the Interacting Instanton Liquid Model

    Get PDF
    The non-perturbative quark-gluon interaction depends significantly on the value of the quark mass. In particular, in the light quark mass regime, correlations are strongly influenced by dynamics associated to chiral symmetry breaking. We use the Interacting Instanton Liquid Model (IILM) as a tool to investigate the microscopic dynamical mechanisms which underly the dependence on the quark mass and drive the transition into the chiral regime of QCD. To ensure the validity of the model, we first verify that the dependence on the quark mass for several observables calculated in the IILM agrees well with the predictions of chiral perturbation theory and with lattice simulations. We then show that a quark mass m*~80 MeV emerging naturally from the model specifies the mass scale above which the dynamics associated with low-lying eigenmodes of the Direac operator becomes sub-leading and the contribution of the fermion determinant is suppressed.Comment: contribution to XXV International Symposium on Lattice Field Theory, July 2007, Regensbur

    Electromagnetic form factors of the Delta baryon

    Full text link
    We develop a methodology that enables us to extract accurately the electromagnetic Delta form factors and their momentum dependence. We test our approach in the quenched approximation as a preparation for a study using dynamical fermions. Our calculation of the four form factors covers pion masses between about 410 MeV and 560 MeV on lattices with a size of 2.9 fm and a lattice spacing 0.09 fm. From the form factors we are able to obtain estimates of the magnetic moment and the charge radius of the Delta, which we compare to existing experimental and theoretical results.Our non-zero result for the electric quadrupole form factor signals a deformation of the Delta, pointing to an oblate charge distribution

    Nucleon structure with pion mass down to 149 MeV

    Full text link
    We present isovector nucleon observables: the axial, tensor, and scalar charges and the Dirac radius. Using the BMW clover-improved Wilson action and pion masses as low as 149 MeV, we achieve good control over chiral extrapolation to the physical point. Our analysis is done using three different source-sink separations in order to identify excited-state effects, and we make use of the summation method to reduce their size.Comment: 7 pages, 5 figures. Talk presented at the 30th International Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns, Australi
    corecore