1,730 research outputs found

    TPC Track Reconstruction: Generalized Least Squares Fit

    Get PDF
    Track fitting in the HARP TPC must account for the fact that, because of the rotational symmetry of the TPC, both x and y cluster coordinates have errors at the same level of importance. Conventional fit algorithms which have only one coordinate with error while all other coordinates are error-free, are not appropriate. A generalized least-squares method is described which is symmetric in all coordinates, and applied in a 3D helix fit of TPC tracks

    TPC track distortions: correction maps for magnetic and static electric inhomogeneities

    Get PDF
    Inhomogeneities of the magnetic and electric fields in the active TPC volume lead to displacements of cluster coordinates, and therefore to track distortions. In case of good data taking conditions, the largest effects are expected from the inhomogeneity of the solenoidal magnetic field, and from a distortion of the electric field arising from a high voltage misalignment between the outer and inner field cages. Both effects are stable over the entire HARP data taking. The displacements are large compared to the azimuthal coordinate resolution but can be corrected with sufficient precision, except at small TPC radius. The high voltage misalignment between the outer and inner field cages is identified as the likely primary cause of sagitta distortions of TPC tracks. The position and the length of the target plays an important role. Based on a detailed modelling of the magnetic and static electric field inhomogeneities, precise correction maps for both effects have been calculated. Predictions from the correction maps are compared with laser data

    On TPC cluster reconstruction

    Get PDF
    For a bias-free momentum measurement of TPC tracks, the correct determination of cluster positions is mandatory. We argue in particular that (i) the reconstruction of the entire longitudinal signal shape in view of longitudinal diffusion, electronic pulse shaping, and track inclination is important both for the polar angle reconstruction and for optimum r phi resolution; and that (ii) self-crosstalk of pad signals calls for special measures for the reconstruction of the z coordinate. The problem of 'shadow clusters' is resolved. Algorithms are presented for accepting clusters as 'good' clusters, and for the reconstruction of the r phi and z cluster coordinates, including provisions for 'bad' pads and pads next to sector boundaries, respectively

    Water data: bad TPC pads, 3.6 µs and 100 ns problems

    Get PDF
    Out of the 3972 pads of the HARP TPC, about 9% are 'bad' and not useful for the correct reconstruction of clusters. Bad pads comprise dead pads, noisy pads, and pads with low or undefined amplification. Pads may be bad at one time, but not at another. This memo discusses the sources of information which were used to declare a pad 'bad', and gives the list of bad pads for the water data (runs 19146 to 19301). Also, the 3.6 µs and 100 ns problems of the TPC readout are discussed, including the corrective measures which have been taken

    Performance of TPC crosstalk correction

    Get PDF
    The performance of the CERN-Dubna-Milano (CDM) algorithm for TPC crosstalk correction is presented. The algorithm is designed to correct for uni-directional and bi-directional crosstalk, but not for self-crosstalk. It reduces at the 10% level the number of clusters, and the number of pads with a signal above threshold. Despite of dramatic effects in selected channels with complicated crosstalk patterns, the average longitudinal signal shape of a hit, and the average transverse signal shape of a cluster, are little affected by uni-directional and bi-directional crosstalk. The longitudinal signal shape of hits is understood in terms of preamplifier response, longitudinal diffusion, track inclination, and self-crosstalk. The transverse signal shape of clusters is understood in terms of the TPC's pad response function. The CDM crosstalk correction leads to an average charge decrease at the level of 15%, though with significant differences between TPC sectors. On the whole, crosstalk constitutes a relatively benign malfunction of the TPC readout which, after correction by the CDM algorithm and with proper attention to self-crosstalk, is not an obstacle to progress with physics analysis

    TPC cross-talk correction: CERN-Dubna-Milano algorithm and results

    Get PDF
    The CDM (CERN-Dubna-Milano) algorithm for TPC Xtalk correction is presented and discussed in detail. It is a data-driven, model-independent approach to the problem of Xtalk correction. It accounts for arbitrary amplitudes and pulse shapes of signals, and corrects (almost) all generations of Xtalk, with a view to handling (almost) correctly even complex multi-track events. Results on preamp amplification and preamp linearity from the analysis of test-charge injection data of all six TPC sectors are presented. The minimal expected error on the measurement of signal charges in the TPC is discussed. Results are given on the application of the CDM Xtalk correction to test-charge events and krypton events

    Long-range attraction between particles in dusty plasma and partial surface tension of dusty phase boundary

    Full text link
    Effective potential of a charged dusty particle moving in homogeneous plasma has a negative part that provides attraction between similarly charged dusty particles. A depth of this potential well is great enough to ensure both stability of crystal structure of dusty plasma and sizable value of surface tension of a boundary surface of dusty region. The latter depends on the orientation of the surface relative to the counter-ion flow, namely, it is maximal and positive for the surface normal to the flow and minimal and negative for the surface along the flow. For the most cases of dusty plasma in a gas discharge, a value of the first of them is more than sufficient to ensure stability of lenticular dusty phase void oriented across the counter-ion flow.Comment: LATEX, REVTEX4, 7 pages, 6 figure

    Magnetization reversal of ferromagnetic nanodisc placed above a superconductor

    Full text link
    Using numerical simulation we have studied a magnetization distribution and a process of magnetization reversal in nanoscale magnets placed above a superconductor plane. In order to consider an influence of superconductor on magnetization distribution in the nanomagnet we have used London approximation. We have found that for usual values of London penetration depth the ground state magnetization is mostly unchanged. But at the same time the fields of vortex nucleation and annihilation change significantly: the interval where vortex is stable enlarges on 100-200 Oe for the particle above the superconductor. Such fields are experimentally observable so there is a possibility of some practical applications of this effect.Comment: 8 pages, 9 figure

    Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments

    Get PDF
    Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure extensive air showers (EAS). The precise knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the reconstruction of UHECR. The MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment has been designed to perform such FLY measurements. In this paper we will present the results of FLY in the 290-440 nm wavelength range for dry air and pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50 GeV. The experiment uses a 90Sr radioactive source for low energy measurement and a CERN SPS electron beam for high energy. We find that the FLY is proportional to the deposited energy (E_d) in the gas and we show that the air fluorescence properties remain constant independently of the electron energy. At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio FLY/E_d=17.6 photon/MeV with a systematic error of 13.2%.Comment: 19 pages, 8 figures. Accepted for publication in Astroparticle Physic

    Water data analysis: data reduction from beam and ITC info

    Get PDF
    After recalling the motivation for the analysis of water data, the first stage of data reduction is discussed. This data reduction is based on the selection of protons using beam detector data and ITC information. The resolution of the interaction time in the target which serves as reference for time-of-flight measurement of secondaries, is determined with stable beam optics to be 77 ps, otherwise 106 ps. Cuts, their selection efficiency, event numbers, purity of the data sample after cuts, and some ITC characteristics are presented
    • …
    corecore