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Abstract

Track fitting in the HARP TPC must account for the fact that, because of the
rotational symmetry of the TPC, both x and y cluster coordinates have errors at the
same level of importance. Conventional fit algorithms which have only one coordinate
with error while all other coordinates are error-free, are not appropriate. A generalized
least-squares method is described which is symmetric in all coordinates, and applied
in a 3D helix fit of TPC tracks.
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1 Introduction

Fitting of clusters in the HARP TPC must cope with the fact that, because of the rotational
TPC symmetry, the measurement errors of the transverse cluster coordinates x and y are at
the same level of importance. By contrast, conventional fit algorithms have only one coor-
dinate with error (referred to as ‘dependent’ variable) while all other coordinates (referred
to as ‘independent’ variables) are error-free.

Consider e.g. one straight track in the horizontal direction and another one in the vertical
direction. Suppose the error of the y coordinate is used in the fit, while the error in the x
coordinate is not taken into account by the algorithm. The fit will do pretty well with the
horizontal track and return a reasonable χ2. However, the vertical track will de facto be
fitted with a constant error of the x coordinate and will return a meaningless χ2.

This example suffices to conclude that a fit algorithm with error handling in one coordinate
only is inadequate.

Therefore, the concept of ‘Generalized Least Squares Fit’ (called GLSF below) is introduced
and applied in a 3D fit of TPC coordinates. The GLSF is by construction symmetric in all
coordinates.

The problem addressed by the GLSF is not new. The earliest trace in the literature which
is known to the authors are discussions by Deming [1] in 1931 and 1934. The issue was re-
discovered by Cohen [2] in 1953, and by Brown [3] in 1955. The case of a straight-line fit was
discussed by York [4] in 1966. His discussion was taken up and expanded by Gerhold [5] in
1969. A comprehensive discussion including the geometrical interpretation of the problem,
and the application to a physics case where the procedure proved mandatory for obtaining
a bias-free high-precision result, was given by Dydak [6] in 1972.

Nevertheless, the problem and its solution is still not widely known, as demonstrated e.g.
by Orear [7] in 1981 and Moreno [8] in 1996, who both discussed the special case of two
variables with errors. Texts on Statistics and Data Analysis tend to ignore the issue. A
notable exception is Brandt’s book of 1992 on data analysis [9].

Section 2 presents the generic algorithm of a GLSF for an arbitrary number of coordinates
with correlated errors, and with an arbitrary number of non-linear boundary conditions.
Section 3 discusses errors of fit parameters and their correlations, and the χ2 of the fit.
Section 4 presents the geometric interpretation of the algorithm. Section 5 illustrates the
simple but frequently occuring case of a straight-line fit in two coordinates with uncorrelated
errors. Section 6 presents the algorithm which has been adopted for the 3D-fit of tracks in
the HARP TPC.

2 Generic algorithm

Physical quantities can be measured either directly (e.g. the measurement of a temperature
with a thermometer) or indirectly (e.g. the momentum of a track from points along its
trajectory). Here, we consider the latter case.
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We assume that sufficient measurements are made such that the equations for the wanted
physics parameters are over-determined. We ask for that set of physical parameters which
has the largest statistical weight or, equivalently, the smallest statistical errors. That opti-
mization is achieved through the requirement of ‘maximum likelihood’, which coincides for
Gaussian errors with the ‘least squares’ requirement.

The nomenclature used throughout this paper is as follows:

• be i the index of a measurement point in measurement space, with 1 ≤ i ≤ N ; for
example, i is the index of a cluster along a TPC track;

• be s the coordinate index of a measurement point, with 1 ≤ s ≤ n; be

"X i =





X i
1

. . .
X i

s

. . .
X i

n




, "̄xi =





x̄i
1

. . .
x̄i

s

. . .
x̄i

n




and "xi =





xi
1

. . .
xi

s

. . .
xi

n




(1)

the n-component vector of measured coordinates of the i.th measurement point, the
n-component vector of approximate coordinates used in successive iteration steps,
and the n-component vector of best-fit coordinates of the i.th measurement point;
this latter vector is to represent an unbiased estimate of the n-component vector of
true coordinates; generally, capital letters denote measured coordinates while small
letters denote approximate or fitted coordinates; for example, xi

s with 1 ≤ s ≤ 3 denote
the x, yi and z best-fit coordinates of the i.th TPC cluster.

• be r the index of a fit parameter, with 1 ≤ r ≤ k; be

"α =





α1

. . .
αr

. . .
αk




(2)

the k-component vector of fit parameters; for example, αr with 1 ≤ r ≤ 5 is one of five
parameters of a helical TPC track;

• be l the index of a boundary condition, with 1 ≤ l ≤ m, which the best-fit coordinates
and the best-fit parameters must satisfy:

Fl("x
i, "α) = 0 , (3)

or in vectorial form
"F i = 0 , (4)

where we introduced the symbolic m-component vector

"F i =





F1("xi, "α)
. . .

Fl("xi, "α)
. . .

Fm("xi, "α)




; (5)
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for example, a TPC track must satisfy three boundary conditions which together de-
scribe a helix in 3D space.

A boundary condition or partial derivative thereof which is not evaluated at the best-fit
coordinate positions but at approximate coordinate positions, is labelled by a bar (e.g.
F̄ ). An evaluation at the measured coordinate positions is labelled by a hat (e.g. F̂ ).

With no measurement errors, k equations or, equivalently, k vectors "X i, are sufficient to
determine the k parameters α1,α2, ...αk. In practice, one has N " k, and the optimum set
of parameters must be obtained from an over-determined system of equations.

We start with the ansatz that the probability density of each coordinate measurement X i
s is

a Gaussian around the true location:

p(X i
s) =

1

σXi
s

√
2π

exp

[

−(X i
s − xi

s)
2

2σ2
Xi

s

]

. (6)

In many cases, the coordinate measurement errors will be correlated. Accordingly, we make
the ansatz that the probability density of the vector "X i of coordinate measurements is a
multivariate Gaussian distribution around the true locations. With the n × n covariance
matrix of the measured coordinates X i

s,

Vi =





var(X i
1) cov(X i

1, X
i
2) · · · cov(X i

1, X
i
n)

cov(X i
2, X

i
1) var(X i

2) · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

cov(X i
n, X i

1) cov(X i
n, X i

2) · · · var(X i
n)




, (7)

the probability density of the vector "X i reads as

p( "X i) =
1

(2π)n/2
√

|Vi|
exp

[
−1

2
( "X i − "xi)T(Vi)−1( "X i − "xi)

]
. (8)

The inclusion of the covariance matrix ensures that not only measurement errors of individual
coordinates but also their correlations are taken into account.

Taking error correlation into account is particularly important for TPC coordinates: while
the primary transverse cluster coordinates r and r ·φ are not correlated, the derived coor-
dinates x and y are. At the same time, this example highlights that the correlation matrix
will in general depend on the index i of the measurement point.

In the case of uncorrelated measurements, where the covariance matrix takes the diagonal
form

Vi =





(σi
x1

)2 0 · · · 0
0 (σi

x2
)2 · · · 0

· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · · (σi

xn
)2




, (9)
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Eq. [8] reduces to

p( "X i) =
1

(2π)n/2σi
x1
σi

x2
· · · σi

xn

exp

[
−

n∑

s=1

(X i
s − xi

s)
2

2(σi
xs

)2

]
. (10)

It is stressed that in all considerations of error correlations, only correlations between coor-
dinate errors within the same measurement point are considered. By contrast, coordinate
errors of different measurement points are considered uncorrelated throughout. We will
make use of this feature in the discussions of Section 3.

The maximum likelihood requirement demands that the ‘best-fit’ coordinate vector "xi is to
be determined such that the probability density Eq. [8] is maximal. This requires that

χ2 =
N∑

i=1

( "X i − "xi)T(Vi)−1( "X i − "xi) (11)

takes its minimum value. In case of uncorrelated errors, this reduces to the familiar ‘least
squares’ requirement, where

χ2 =
N∑

i=1

n∑

s=1

pi
s(X

i
s − xi

s)
2 (12)

takes a minimum; here, the ‘weight’ pi
s of the i.th measurement of the xs coordinate is defined

as

pi
s =

1

(σi
xs

)2
. (13)

At this point the difference of the GLSF to the Standard Least Squares Fit becomes ap-
parent: the GLSF has the ‘best-fit’ coordinates xi

s explicitly as additional unknowns to
be determined, whereas in the Standard Least Squares Fit the parameters αr are the only
unknowns. For the ‘best-fit’ coordinate vector "xi to satisfy the N × m boundary conditions
Eqs. [3], the traditional method of solving an optimization problem with boundary conditions
is employed: introducing Lagrange multipliers as further unknowns.

The variation of χ2 Eq. [11] reads with the n-component vector

δ"xi =





δxi
1

. . .
δxi

s

. . .
δxi

n




(14)

as follows:

δχ2 = −2
N∑

i=1

(δ"xi)T(Vi)−1( "X i − "xi) = 0 . (15)

Without loss of generality, we replace the constant factor −2 by 1.

The variation of the boundary conditions Eqs. [3] is

δFl("x
i, "α) =

n∑

s=1

∂Fl("xi, "α)

∂xs
δxi

s +
k∑

r=1

∂Fl("xi, "α)

∂αr
δαr = 0 , (16)
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or, in the vector notation of Eqs. [4],

δ "F i = (∂xFi)δ"xi + (∂αFi)δ"α = 0 , (17)

where we introduced the m-component vector

δ "F i =





δF1("xi, "α)
. . .

δFl("xi, "α)
. . .

δFm("xi, "α)




, (18)

the k-component vector

δ"α =





δα1

. . .
δαr

. . .
δαk




, (19)

the m × n matrix

∂xFi =





∂F i
1

∂x1
· · · ∂F i

1
∂xn

·
·
·

∂F i
m

∂x1
· · · ∂F i

m
∂xn




(20)

and the m × k matrix

∂αFi =





∂F i
1

∂α1
· · · ∂F i

1
∂αk

·
·
·

∂F i
m

∂α1
· · · ∂F i

m
∂αk




. (21)

We multiply each of Eqs. [17] with a Lagrange multiplier λi
l and sum all N×m equations with

Eq. [15]. We order according to the variables’ variations and set the respective coefficients
to zero. This leads to the following N × n equations

(Vi)−1( "X i − "xi) + (∂xFi)T"λi = 0 , (22)

where we introduced the m-component vector

"λi =





λi
1

. . .
λi

l

. . .
λi

m




; (23)

and the k equations
N∑

i=1

(∂αFi)T"λi = 0 . (24)
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Together with the N × m boundary conditions "F i = 0 (Eqs. [4]), we have for the N × n
unknowns xi

s, plus N×m unknowns λi
l, plus k unknowns αr, together N(m+n)+k unknowns,

the same number of equations. Therefore, a solution of the above system of equations is in
principle possible, and in case of linear boundary conditions the solution will be unique.

The solution of the above system of equations proceeds in four steps:

1. we express the xi
s in terms of λi

l and αr in the N × n Eqs. [22];

2. we insert the xi
s into the N × m boundary conditions Eqs. [4]; this operation yields

N × m equations with the only variables λi
l and αr;

3. we then express the λi
l in these N × m euqations in terms of the k parameters αr;

4. we finally insert the λi
l into Eqs. [24]; this operation yields a system of k equations for

the wanted k parameters αr.

The first step gives the result

"xi = "X i + Vi(∂xFi)T"λi , (25)

which reduces for uncorrelated errors to

xi
s = X i

s +
m∑

l=1

λi
l

1

pi
s

∂Fl("xi, "α)

∂xs
. (26)

The second step meets an inherent difficulty: it can only be made in explicit analytic form
after linearizing the boundary conditions Eqs. [3, 4] in the form of a Taylor expansion
around good guesses of the unknown best-fit coordinates and parameters. This means of
course that the best-fit results cannot be obtained by just solving the system of equations
discussed above, but through convergence after several iterations.

Fortunately, good initial guesses for the best-fit coordinates "xi exist: the measured coordi-
nates "X i.

The linearization of the boundary conditions Eqs. [3, 4]] by Taylor expansion gives

Fl("x
i, "α) ∼= Fl("̄x

i, "̄α) (27)

+
n∑

s=1

∂Fl("̄xi, "̄α)

∂xs
(xi

s − x̄i
s) +

k∑

r=1

∂Fl("̄xi, "̄α)

∂αr
(αr − ᾱr) = 0 ,

or, equivalently, in vectorial form

"F i ∼= "̄F i + (∂xF̄i)("xi − "̄xi) + (∂αF̄i)("α− "̄α) = 0 . (28)

The variation of Eqs. [27, 28] gives

δFl("x
i, "α) ∼=

n∑

s=1

∂Fl("̄xi, "̄α)

∂xs
δxi

s +
k∑

r=1

∂Fl("̄xi, "̄α)

∂αr
δαr = 0 , (29)
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or, equivalently,

δ "̄F i ∼= (∂xF̄i)δ"xi + (∂αF̄i)δ"α = 0 , (30)

where F is replaced everywhere by F̄, i.e. the respective terms are not evaluated at the
best-fit coordinate positions "xi, but at the approximate values "̄xi at each iteration step.
Of course, Eqs. [30] look formally the same as Eqs. [17] above.

Now we can proceed with the second step. Inserting the "xi from Eqs. [25] – again replacing
all terms ∂Fi by ∂F̄i – into the linearized boundary conditions Eqs. [28] gives the N × m
equations

"̄F i + (∂xF̄i)( "X i + Vi(∂xF̄i)T"λi − "̄x
i
) + (∂αF̄i)("α− "̄α) = 0 , (31)

from which we extract, in the third step, the N ×m Lagrange multipliers "λi in terms of the
parameters "α:

"λi = [(∂xF̄i)Vi(∂xF̄i)T]−1[− "̄F i − (∂xF̄i)( "X i − "̄x
i
) − (∂αF̄i)("α− "̄α)] (32)

For uncorrelated errors, this expression reduces for the l.th boundary condition to

λi
l = P̄ i

l [−Fl("̄x
i, "̄α) −

n∑

s=1

∂Fl("̄xi, "̄α)

∂xs
(X i

s − x̄i
s) −

k∑

r=1

∂Fl("̄xi, "̄α)

∂αr
(αr − ᾱr)]

with the overall ‘weight’

P̄ i
l =

1
∑n

s=1
1
pi

s
(∂Fl(#̄xi,#̄α)

∂xs
)2

.

In the fourth and final step, we insert the "λi into Eqs. [24] – once more replacing all terms
∂Fi by ∂F̄i –, which results in the following system of k linear equations for the k parameters
"α:

N∑

i=1

(∂αF̄i)T[(∂xF̄i)Vi(∂xF̄i)T]−1[− "̄F i − (∂xF̄i)( "X i − "̄x
i
) − (∂αF̄i)("α− "̄α)] = 0 . (33)

or, after rearrangement,

N∑

i=1

(∂αF̄i)T[(∂xF̄i)Vi(∂xF̄i)T]−1(∂αF̄i)"α = (34)

N∑

i=1

(∂αF̄i)T[(∂xF̄i)Vi(∂xF̄i)T]−1[− "̄F i − (∂xF̄i)( "X i − "̄x
i
) + (∂αF̄i)("̄α)] .

At this point, we introduce the N × k matrix Ā (the rationale behind this step will become
clear only in the discussion of errors, see Section 3):

Ā =





√
R̄1(∂α1F̄1) · · ·

√
R̄1(∂αk

F̄1)
·
·
·√

R̄N (∂α1F̄N) · · ·
√

R̄N(∂αk
F̄N)




, (35)
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where we introduced the short-hand notation

R̄i = [(∂xF̄i)Vi(∂xF̄i)T]−1 . (36)

for this m×m matrix. The notation
√

R̄i refers to the matrix which, when multiplied with its
transposed matrix, reproduces the matrix R̄i (according to the Cholesky decomposition [10],
this is possible for a symmetric and positive-definite matrix, as is the case here). Further,
through the use of the m-component vector

(∂αr F̄i) =





∂F1(#̄xi,#̄α)
∂αr

. . .
∂Fl(#̄x

i,#̄α)
∂αr

. . .
∂Fm(#̄xi,#̄α)

∂αr




, (37)

each element of the above matrix Ā represents in fact a vector with as many components as
the number of boundary conditions.

We further introduce the N -component vector

"a =





√
R̄1[− "̄F 1 − (∂xF̄1)( "X1 − "̄x

1
) + (∂αF̄1)"̄α]

. . .√
R̄i[− "̄F i − (∂xF̄i)( "X i − "̄x

i
) + (∂αF̄i)"̄α]

. . .√
R̄N [− "̄F N − (∂xF̄N)( "XN − "̄x

N
) + (∂αF̄N)"̄α]




, (38)

where the same calculational conventions apply.

It is understood that in multiplications involving the matrix Ā or the vector "a, the first
step is always the contraction of the m components of each element to a scalar number, by
multiplying with the pertinent transposed vector.

The above conventions ensure that the general element Aαrαr′ of the

(k × m) · (m × n) · (n × n) · (n × m) · (m × k) = k × k

matrix ĀTĀ is indeed the scalar number

Aαrαr′ =
N∑

i=1

(∂αr F̄i)T[(∂xF̄i)Vi(∂xF̄i)T]−1(∂αr′ F̄
i) (39)

Analogously, the

(k × m) · (m × n) · (n × n) · (n × m) · (m × 1) = k × 1

matrix or, equivalently, k-component vector ĀT"a is indeed

ĀT"a =
N∑

i=1

(∂αF̄i)T[(∂xF̄i)Vi(∂xF̄i)T]−1[− "̄F i − (∂xF̄i)( "X i − "̄x
i
) + (∂αF̄i)"̄α] . (40)
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Equations [34] can then be written as

ĀTĀ "α = ĀT"a , (41)

with the solution for the k wanted parameters

"α = (ĀTĀ)−1 ĀT"a . (42)

With "α known, the Lagrange multipliers "λi can be determined from Eqs. [32]. They are used
to calculate the best-fit values of coordinate positions "̄xi from Eqs. [25]. The thus determined
best-fit values of coordinate positions and parameters serve as improved guesses for the next
iteration step. After satisfactory convergence of the results, the iteration can be terminated.

3 Errors and covariance matrix

The calculation of the errors, and their correlations, of the k wanted parameters "α proceeds
again in the approximation of a linear Taylor expansion of the boundary conditions. For the
parameters "α, the expansion is made around their approximate values in each iteration
step, alike the procedure discussed earlier in Section 2 Unlike the earlier procedure, the
expansion of the coordinate positions is made around the set of measured values, for
all iteration steps. To highlight the evaluation of the boundary conditions at the position of
the measured coordinates, we use the notation F̂ and F̂ in lieu of F̄ and F̄, respectively.

Accordingly, we define the following variations around the approximate values: the n-
component vector of coordinate variations

"vi
x = "xi − "X i (43)

and the k-component vector of parameter variations

"vα = "α− "̄α . (44)

The boundary conditions then read as

"F i ∼= "̂F i + (∂xF̂i)"vi
x + (∂αF̂i)"vα = 0 . (45)

We note the equalities
δ"vi

x = δ"xi

and
δ"vα = δ"α ,

which permit to repeat all calculational steps outlined in Section 2, i.e. setting up the same
system of equations and applying the same method for their solution. Unless explicitly
stated, we use also the same nomenclature.
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Accordingly, using the matrix (see Eq. [35])

Â =





√
R̂1(∂α1F̂1) · · ·

√
R̂1(∂αk

F̂1)
·
·
·√

R̂N (∂α1F̂N) · · ·
√

R̂N(∂αk
F̂N)




, (46)

we can directly give the solution for the variation of the k parameters as

"vα = (ÂTÂ)−1 ÂT"b . (47)

However, the vector "b, which is constructed analogously to the vector "a in Section 2 (see
Eq. [38]), is – apart from the evaluation of the boundary conditions and their derivatives
not at approximate coordinate positions, but at their measured positions – different from
the vector "a in two aspects: the term proportional to ( "X i − "̄xi) is now identical to zero, and
the term (∂αF̂i)"̄α has been absorbed into the parameters’ variation. Accordingly, the vector
"b reads as

"b =





√
R̂1[− "̂F 1]

. . .√
R̂i[− "̂F i]
. . .√

R̂N [− "̂F N ]




, (48)

Here, not the expectation value of "vα is of interest but its variance. According to the rule of
variance calculation of the product of a matrix with a vector, we obtain from Eqs. [47] the
variance

var "vα = (ÂTÂ)−1 ÂT (var "b) Â(ÂTÂ)−1 . (49)

The covariance matrix var "b has the form

var"b = σ2





1 0 · · · 0
0 1 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · · 1




, (50)

since the N measurements, other than the coordinate measurements within one measure-
ment point, are independent of each other. Furthermore, because of the normalization by
appropriate weights, all N measurements have the same variance σ2, the expectation value
of which is unity.

In retrospect, we recognize that the matrix Â and the vector "b were defined with the goal in
mind to make possible this generic assertion on var"b. What matters in practical calculations,
is the m×m matrix ÂTÂ only, for the calculation of both the best-fit parameters and their
correlation matrix.

After inserting this covariance matrix into Eq. [49] we obtain the result

var "vα = σ2(ÂTÂ)−1 . (51)
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4 Geometric interpretation

The GLSF has an elegant geometrical interpretion which we give here for the special case
of uncorrelated errors of the coordinates of a measurement point, and for one boundary
condition (it is conjectured that the interpretation holds also for the case with correlated
errors and for several boundary conditions).

We suppose that the GLSF has successfully converged after a few iterations, and that the
best-fit coordinates and the best-fit parameters are all numerically determined.

We start from Eqs. [26] which for the i.th measurement point (1 ≤ i ≤ N), the s.th coordinate
(1 ≤ s ≤ n) and for one boundary condition reads as

xi
s = X i

s + λi 1

pi
s

∂F i

∂xs
. (52)

This is the equation of the straight line in measurement space which connects the measured
point "X i with the associated best-fit point "xi. The direction of the straight line is given by
the n-component vector 



1
pi
1

∂F i

∂x1

. . .
1
pi

s

∂F i

∂xs

. . .
1
pi

n

∂F i

∂xn




. (53)

The best-fit point is located on the hyper-sheet which represents the boundary condition.
The vector which is perpendicular to the tangential plane in the best-fit point, is given by

"ni
hs =





∂F i

∂x1

. . .
∂F i

∂xs

. . .
∂F i

∂xn




. (54)

From this follows that the line connecting the points "X i and "xi will only in case of equal
weights pi

s, i.e. of equal measurement errors in all coordinates, be perpendicular to the
hyper-sheet.

We now construct an error-ellipsoid around the measured point "X i, with half-axes σi
s. This

error-ellipsoid is given by

pi
1(u1 − X i

1)
2 + . . . + pi

s(us − X i
s)

2 + . . . + pi
n(un − X i

n)2 = 1 (55)

The tangential plane in a given point "vi on the i.th error-ellipsoid is given by

pi
1(u1 − X i

1)(v
i
1 − X i

1) + . . . + pi
s(us − X i

s)(v
i
s − X i

s) + . . . + pi
n(un − X i

n)(vi
n − X i

n) = 1 (56)
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The vector perpendicular to the tangential plane to the error-ellipsoid in the point "vi is

"ni
ee =





pi
1(v

i
1 − X i

1)
. . .

pi
s(v

i
s − X i

s)
. . .

pi
n(vi

n − X i
n)




. (57)

We take for the point "vi specifically the point where the straight line from "X i to "xi crosses
the error-ellipsoid. For this, it follows from Eqs. [52] and [55] that the pertinent λi

0 must
take the numerical value

λi
0 = ± 1√

∑n
s=1

1
pi

s

[
∂F i

∂xs

]2
. (58)

The vector perpendicular to the tangential plane to the error-ellipsoid in the point "vi is then

"ni
ee =





λi
0

∂F i

∂x1

. . .
λi

0
∂F i

∂xs

. . .
λi

0
∂F i

∂xn




. (59)

A comparison with the vector "ni
hs shows that both vectors are parallel.

Therefore, the position of the best-fit point "xi on the hyper-sheet is such that
the tangential plane to the hyper-sheet in this point is parallel to the tangential
plane to the error-ellipsoid around the measured point "X i, in the point where
the straight line connecting "X i with "xi crosses the error-ellipsoid.

Figure 1 illustrates this geometric interpretation in 3D measurement space.

5 Application to straight-line fit

As a simple example of the GLSF we discuss its application to the problem of fitting a straight
line through N measured points (X i ± σi

x, Y
i ± σi

y). We assume that the measurements of
the two coordinates x and y are uncorrelated.

The boundary condition (see Eq. [4]) for the ‘best-fit’ points (xi, yi) is

F i = yi − kxi − d = 0 , (60)

with the slope k and the intercept d as parameters.

This special form of the boundary condition permits to get away with less approximate
values of the coordinates and parameters than needed in the algorithm for the general case.

The fit aims at minimizing (see Eq. [12])

χ2 =
N∑

i=1

[
pi

x(X
i − xi)2 + pi

y(Y
i − yi)2

]
, (61)
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Figure 1: Measured points, error-ellipsoids and best-fit hyper-sheet in 3D measurement
space.

where pi
x = 1/(σi

x)
2 and pi

y = 1/(σi
y)

2.

From the equation δχ2 = 0 (see Eq. [15]) and the N equations δF i = 0 (see Eqs. [17]) follow
after the multiplication with N Lagrange multipliers λi the 2N + 2 equations (see Eqs. [22]
and [24]):

−kλi + pi
x(X

i − xi) = 0 (62)

λi + pi
y(Y

i − yi) = 0 (63)
N∑

i=1

λix̄i = 0 (64)

N∑

i=1

λi = 0 , (65)

in addition to the N boundary conditions F i = 0, for the 3N + 2 unknowns "x, "y, λi, k and
d. The linear dependence of the boundary conditions on the coordinates necessitates only

13



in Eq. [64] the use of approximate coordinates x̄i in lieu of the best-fit coordinates xi.

According to Eqs. [26] we calculate the best-fit coordinates

xi = X i − k

pi
x

λi

yi = Y i +
1

pi
y

λi , (66)

and insert them into the N boundary conditions Eqs. [60]. This gives the Lagrange multi-
pliers

λi = P̄ i(kX i − Y i + d) , (67)

where P̄ i is the approximate ‘weight’ of the i.th measurement point,

P̄ i =
1

1/pi
y + k̄2/pi

x

, (68)

for the calculation of which the use of an approximate slope k̄ is necessary.

Now we insert these Lagrange multipliers into Eqs. [64] and [65]. This yields two linear
equations for the two parameters k and d:

k
∑

P̄ iX ix̄i + d
∑

P̄ ix̄i =
∑

P̄ iY ix̄i (69)

k
∑

P̄ iX i + d
∑

P̄ i =
∑

P̄ iY i , (70)

where all sums run from 1 to N . The best-fit parameters are then

k =
(
∑

P̄ i)(
∑

P̄ iY ix̄i) − (
∑

P̄ iY i)(
∑

P̄ ix̄i)

(
∑

P̄ i)(
∑

P̄ iX ix̄i) − (
∑

P̄ iX i)(
∑

P̄ ix̄i)
(71)

d =
(
∑

P̄ iY i)(
∑

P̄ iX ix̄i) − (
∑

P̄ iX i)(
∑

P̄ iY ix̄i)

(
∑

P̄ i)(
∑

P̄ iX ix̄i) − (
∑

P̄ iX i)(
∑

P̄ ix̄i)
. (72)

We note that these expressions for the straight-line parameters k and d look formally like
those obtained in a Standard Least Squares Fit where only the y coordinate has an error,
by contrast to the x coordinate which is error-free. The difference is the weight of the
measurement point which is for the Standard Least Squares Fit

P i = pi
y = 1/(σi

y)
2 ,

by contrast to the weight given by Eq. [68] for the GLSF.

After the measured coordinates X i and Y i have initially been used as approximate cooordi-
nates, better approximate coordinates x̄i can now be calculated from Eqs. [66] with the help
of the Lagrange multipliers from Eqs. [67]. Also, better approximate weights P̄ i can now
be calculated with the result for k. With these better approximations the next iteration is
made, and so on, until convergence of the results at the wanted level of precision is achieved.

Figure 2 illustrates the main issue of the GLSF: complete symmetry between both coordi-
nates with respect to the treatment of their errors. Besides the measured points with their

14



Figure 2: Measured points with errors, GLSF best-fit straight line, and best-fit points.

errors, also the best-fit points are shown. Table 1 gives the results for the slope k and the
intercept d of straight-line fits to the measured points shown in Fig. 2, for the Standard Least
Squares Fit as well as for iterative steps of the GLSF. The difference between the results of
the Standard Least Squares Fit and the GSLF is noticeable. For the GSLF, in many cases
already the first pass with the measured coordinates as approximate coordinates in Eqs. [71]
and [72] will give numerical results for the parameters k and d with sufficient precision.

According to the considerations outlined in Section 3, the errors of the parameters are given
by

σ2
k =

∑
P̄ i

(
∑

P̄ i)(
∑

P̄ i(X i)2) − (
∑

P̄ iX i)2
(73)

σ2
d =

∑
P̄ i(X i)2

(
∑

P̄ i)(
∑

P̄ i(X i)2) − (
∑

P̄ iX i)2
, (74)

where again the sums run from 1 to N , and the same comment as above applies regarding
the comparison with the variance of the parameters in the Standard Least Squares Fit.
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Table 1: Best-fit values of slope and intercept of straight-line fits of the measured points
shown in Fig. 2.

Slope Intercept

True values 0.3 3.
Standard Fit 0.3161 2.9276
GLSF Pass No.1 0.3138 2.9034
GLSF Pass No.2 0.3149 2.9015
GLSF Pass No.3 0.3149 ± 0.0177 2.9014 ± 0.0679

6 Application to TPC track fit

6.1 Covariance matrix of TPC coordinate measurements

The HARP TPC has the pads organized in concentric rings. Therefore, the directly measured
coordinates are the two transverse coordinates r and r·φ, and the longitudinal coordinate z.
The errors of these three coordinates are considered mutually uncorrelated.

In the transformation from (r, r ·φ, z) to the righthanded Cartesian system (x, y, z), the z
coordinate error remains uncorrelated while the x and y coordinate errors become correlated
among themselves, depending on the azimuthal φ angle. This correlation is taken into
account in the GLSF.

In the coordinate system of uncorrelated transverse coordinates r and r ·φ, the covariance
matrix is

V∗ =

(
σ2

r 0
0 σ2

rφ

)
. (75)

We transform this matrix into the one of a coordinate system rotated by the azimuthal angle
φ. The result is

V =

(
σ2

r cos2 φ + σ2
rφ sin2 φ sinφ cosφ(σ2

rφ − σ2
r)

sinφ cosφ(σ2
rφ − σ2

r) σ2
r sin2 φ + σ2

rφ cos2 φ

)
. (76)

6.2 Algorithm for 3D TPC track fit

The standard HARP coordinate system (x, y, z) is employed: looking downstream in the +z
direction, the +x coordinate points to the left, and the +y coordinate points up.

A charged particle follows in the TPC’s uniform solenoidal magnetic field a helical trajectory
with the helix axis parallel to the z axis. We parameterize the helix by the following set of
three equations with five parameters:






x = a + r cosψ
y = b + r sinψ
z = c + kψ .

(77)

16



We utilize the symbol ψ for the azimuthal angle parameter of the helix, by contrast to the
symbol φ which denotes the azimuthal angle of the rotational TPC geometry.

The TPC measures the coordinate vector of the i.th space point along a track,

"X i =




X i

Y i

Z i



 , (78)

with the covariance matrix

Vi =




var(X i) cov(X i, Y i) cov(X i, Z i)

cov(Y i, X i) var(Y i) cov(Y i, Z i)
cov(Z i, X i) cov(Z i, Y i) var(Z i)





=




(σi

r)
2 cos2Φi + (σi

rφ)
2 sin2Φi sinΦi cosΦi((σi

rφ)
2 − (σi

r)
2) 0

sinΦi cosΦi((σi
rφ)

2 − (σi
r)

2) (σi
r)

2 sin2Φi + (σi
rφ)

2 cos2 Φi 0
0 0 σ2

z



 , (79)

where Ri =
√

(X i)2 + (Y i)2 and Φi = arctan (Y i/X i) are the polar coordinates of the

transverse projection of the space point "X i. The transverse coordinate correlation is modelled
according to Eq. [76].

The above helix parameterization gives, in vector notation, the set of boundary conditions

"F i =




xi − a − r cosψi = 0
yi − b − r sinψi = 0
zi − c − kψi = 0



 (80)

with 5 parameters

"α =





a
b
r
c
k




. (81)

The GLSF determines best-fit coordinates "xi and best-fit parameters "α. For reasons of ‘easy’
mathematics in the special case of a helix fit (with a view to exploiting the linearity of the
boundary conditions in the parameters "α), we introduce additional best-fit parameters: the
azimuthal angles "ψ, to be determined by the GLSF (these new parameters are fully correlated
with the coordinates "xi, and therefore do not impair the precision of the parameters "α):

"ψ =





ψ1

. . .
ψi

. . .
ψN




. (82)

First, we calculate according to Eq. [20] the 3 × 3 matrix of derivatives of the boundary
conditions w.r.t. the coordinates x, y, and z, with the particularly appealing result

∂xFi =




1 0 0
0 1 0
0 0 1



 (83)
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Analogously, we calculate the 3× N matrix of derivatives of the boundary conditions w.r.t.
the coordinates "ψ:

∂ψFi =





∂F1
∂ψ1

. . . ∂F1
∂ψi

. . . ∂F1
∂ψN

∂F2
∂ψ1

. . . ∂F2
∂ψi

. . . ∂F2
∂ψN

∂F3
∂ψ1

. . . ∂F3
∂ψi

. . . ∂F3
∂ψN





=




0 . . . 0 r sinψi 0 . . . 0
0 . . . 0 −r cosψi 0 . . . 0
0 . . . 0 −k 0 . . . 0



 . (84)

Finally, we calculate according to Eq. [21] the 3 × 5 matrix of derivatives of the boundary
conditions w.r.t. the parameters "α:

∂αFi =




−1 0 − cosψi 0 0
0 −1 − sinψi 0 0
0 0 0 −1 −ψi



 . (85)

Because the boundary conditions are linear in the coordinates "xi and the parameters "α, they
can be written as

"F i = (∂xFi)"xi + (∂αFi)"α = "xi + (∂αFi)"α = 0 . (86)

We now insert according to Eq. [25] the "xi into the boundary conditions Eqs. [86] and obtain

"F i = "X i + Vi"λi + (∂αFi)"α = 0 , (87)

from where we extract the Lagrange multipliers "λi in terms of the parameters "α:

"λi = −(Vi)−1
[
"X i + (∂αFi)"α

]
. (88)

We insert these Lagrange multipliers first into the N equations

(∂ψFi)T"λi = 0 (89)

which arise from the new parameters "ψ in analogy to Eq. [24]. The simple form of the matrix
∂ψFi (see Eq. [84]) permits to re-write these equations in the form

("T i)T"λi = 0 , (90)

where we introduced the 3-component vector

"T i =




r sinψi

−r cosψi

−k



 . (91)

This gives the N equations
(
"T i

)T

(Vi)−1
[
"X i + (∂αFi)"α

]
= 0 . (92)

Then, we insert the Lagrange multipliers "λi into the five equations

N∑

i=1

(∂αFi)T"λi = 0 . (93)
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which arise from the parameters "α according to Eq. [24]. This gives the five equations

N∑

i=1

(∂αFi)T
(
V i

)−1
[
"X i + (∂αFi)"α

]
= 0 . (94)

Altogether, we have now N + 5 equations for the N + 5 unknowns "ψi and "α.

First we solve Eqs. [94] for the five parameters "α. Approximating (∂αFi) by (∂αF̄i), we obtain

"α = D−1"d , (95)

where we use the 5 × 5 matrix

D =
N∑

i=1

(∂αF̄i)T(Vi)−1(∂αF̄i) (96)

and the 5-component vector

"d = −
N∑

i=1

(∂αF̄i)T (Vi)−1 "X i . (97)

Then, we solve Eqs. [92] for the angles "ψi. Because of the nonlinear sin and cos functions,
we must resort to a linearization of the elements of the ∂αFi matrix w.r.t. ψi in order to
obtain a system of linear equations. With approximate angles ψ̄i, we can write

(∂αFi)"α ∼= (∂αF̄i)"α + "̄T i(ψi − ψ̄i) ,

where ∂αF̄i and "̄T i are evaluated at the approximate angles ψ̄i.

We insert this approximation for (∂αFi)"α into Eqs. [92] and obtain the N angles ψi:

ψi = ψ̄i −
( "̄T i)T(Vi)−1

[
"X i + (∂αF̄i)"α

]

( "̄T i)T(Vi)−1 "̄T i
. (98)

The final set of best-fit parameters "α and best-fit angles "ψ is obtained by iterating the
solutions of Eqs. [95] and [98]. We start from an initial set of angles ψ̄i and parameters
"̄α, and calculate from Eq. [95] an improved set of parameters. With these, we calculate
from Eqs. [98] improved angles. With a good initial estimate of parameters, convergence is
achieved after few iterations. After convergence, the covariance matrix for the five parameters
"α is calculated according to Eq. [51] as

var "α = D−1 . (99)

Figure 3 shows an example of a 2D GLSF of the transverse projection of ‘measured’ points
along a helical track in the TPC. Besides the measured points, also the pertinent best-fit
points are shown.

Table 2 shows the fit results for a standard fit, and for the first 3 passes of the GLSF.

The GLSF algorithm of the 3D helix fit of TPC tracks has been coded accordingly, and is
now routinely used for TPC track fitting.

19



X (mm)
-100 -50 0 50 100 150 200 250 300

X (mm)
-100 -50 0 50 100 150 200 250 300

Y 
(m

m
)

-50

0

50

100

150

200

250

300

350

fit of circle

Figure 3: Measured points with errors, GLSF best-fit circle, and best-fit points.
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