4 research outputs found

    Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis.

    No full text
    Bacillus anthracis is the causative agent of anthrax, a disease that affects wildlife, livestock, and humans. Protection against anthrax is primarily afforded by immunity to the B. anthracis protective antigen (PA), particularly PA domains 4 and 1. To further the development of an orally delivered human vaccine for mass vaccination against anthrax, we produced Salmonella enterica serovar Typhimurium expressing full-length PA, PA domains 1 and 4, or PA domain 4 using codon-optimized PA DNA fused to the S. enterica serovar Typhi ClyA and under the control of the ompC promoter. Oral immunization of A/J mice with Salmonella expressing full-length PA protected five of six mice against a challenge with 10(5) CFU of aerosolized B. anthracis STI spores, whereas Salmonella expressing PA domains 1 and 4 provided only 25% protection (two of eight mice), and Salmonella expressing PA domain 4 or a Salmonella-only control afforded no measurable protection. However, a purified recombinant fusion protein of domains 1 and 4 provided 100% protection, and purified recombinant 4 provided protection in three of eight immunized mice. Thus, we demonstrate for the first time the efficacy of an oral S. enterica-based vaccine against aerosolized B. anthracis spores

    Analysis of protection afforded by a Clostridium perfringens alpha-toxoid against heterologous clostridial phospholipases C.

    No full text
    The major virulence determinant in clostridial myonecrosis caused by Clostridium perfringens is a phospholipase C (PLC), the alpha-toxin. Previously, mice have been protected against challenge with heterologous alpha-toxin or Clostridium perfringens spores by immunisation with the C-domain (known as Cpa(247-370) or alpha-toxoid) of the alpha-toxin. In this study, we have determined the ability of the alpha-toxoid to protect against the lethal effects of a divergent C. perfringens alpha-toxin and against the PLCs of C. absonum or C. bifermentans, species which have been isolated from cases of clostridial myonecrosis. Protection against the C. perfringens alpha-toxin variant, the C. absonum alpha-toxin or the C. bifermentans PLC was elicited by immunisation with the alpha-toxoid in vivo

    An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor

    No full text
    Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone
    corecore