111 research outputs found

    High Compliance with Scheduled Nimodipine Is Associated with Better Outcome in Aneurysmal Subarachnoid Hemorrhage Patients Cotreated with Heparin Infusion

    Get PDF
    IntroductionWe sought to determine whether compliance with scheduled nimodipine in subarachnoid hemorrhage patients impacted patient outcomes, with the intent of guiding future nimodipine management in patients who experience nimodipine-induced hypotension.MethodsWe performed a retrospective analysis of 118 consecutive aneurysmal subarachnoid hemorrhage patients treated with the Maryland Low-Dose IV Heparin Infusion Protocol. Patients were categorized into three independent nimodipine compliance groups: ≥1 dose held, ≥1 dose split, and no missed or split-doses. A split-dose was defined as 30 mg of nimodipine administered every 2 h. Our primary outcome was discharge to home. Bivariate and multivariable logistic regression analyses were used to assess predictors of discharge disposition as a function of nimodipine compliance.ResultsOf the 118 patients, 20 (17%) received all nimodipine doses, 6 (5%) received split-doses but never had a full dose held, and 92 (78%) had ≥1 dose held. Forty-five percent of patients were discharged to home, including 75% who received all doses, 67% who received ≥1 split-doses, and 37% with ≥1 missed doses (p = 0.003). Multivariable analysis showed that, along with age and World Federation of Neurosurgical Societies grade, nimodipine compliance was an independent predictor of clinical outcome; compared to missing one or more nimodipine doses, full dosing compliance was associated with increased odds of discharge to home (odds ratio 5.20; 95% confidence intervals 1.46–18.56).ConclusionIn aneurysmal subarachnoid hemorrhage patients with modified Fisher scores 2 through 4 who are cotreated with a low-dose heparin infusion, full compliance with nimodipine dosing was associated with increased odds of discharge to home

    The Modified Fisher Scale Lacks Interrater Reliability.

    Get PDF
    BACKGROUND: The modified Fisher scale (mFS) is a critical clinical and research tool for risk stratification of cerebral vasospasm. As such, the mFS is included as a common data element by the National Institute of Neurological Disorders and Stroke SAH Working Group. There are few studies assessing the interrater reliability of the mFS. METHODS: We distributed a survey to a convenience sample with snowball sampling of practicing neurointensivists and through the research survey portion of the Neurocritical Care Society Web site. The survey consisted of 15 scrollable CT scans of patients with SAH for mFS grading, two questions regarding the definitions of the scale criteria and demographics of the responding physician. Kendall\u27s coefficient of concordance was used to determine the interrater reliability of mFS grading. RESULTS: Forty-six participants (97.8% neurocritical care fellowship trained, 78% UCNS-certified in neurocritical care, median 5 years (IQR 3-6.3) in practice, treating median of 80 patients (IQR 50-100) with SAH annually from 32 institutions) completed the survey. By mFS criteria, 30% correctly identified that there is no clear measurement of thin versus thick blood, and 42% correctly identified that blood in any ventricle is scored as intraventricular blood. The overall interrater reliability by Kendall\u27s coefficient of concordance for the mFS was moderate (W = 0.586, p \u3c 0.0005). CONCLUSIONS: Agreement among raters in grading the mFS is only moderate. Online training tools could be developed to improve mFS reliability and standardize research in SAH

    Nutritional support and brain tissue glucose metabolism in poor-grade SAH: a retrospective observational study

    Get PDF
    INTRODUCTION: We sought to determine the effect of nutritional support and insulin infusion therapy on serum and brain glucose levels and cerebral metabolic crisis after aneurysmal subarachnoid hemorrhage (SAH). METHODS: We used a retrospective observational cohort study of 50 mechanically ventilated poor-grade (Hunt-Hess 4 or 5) aneurysmal SAH patients who underwent brain microdialysis monitoring for an average of 109 hours. Enteral nutrition was started within 72 hours of admission whenever feasible. Intensive insulin therapy was used to maintain serum glucose levels between 5.5 and 7.8 mmol/l. Serum glucose, insulin and caloric intake from enteral tube feeds, dextrose and propofol were recorded hourly. Cerebral metabolic distress was defined as a lactate to pyruvate ratio (LPR) > 40. Time-series data were analyzed using a general linear model extended by generalized estimation equations (GEE). RESULTS: Daily mean caloric intake received was 13.8 ± 6.9 cal/kg and mean serum glucose was 7.9 ± 1 mmol/l. A total of 32% of hourly recordings indicated a state of metabolic distress and < 1% indicated a state of critical brain hypoglycemia (< 0.2 mmol/l). Calories received from enteral tube feeds were associated with higher serum glucose concentrations (Wald = 6.07, P = 0.048), more insulin administered (Wald = 108, P < 0.001), higher body mass index (Wald = 213.47, P < 0.001), and lower body temperature (Wald = 4.1, P = 0.043). Enteral feeding (Wald = 1.743, P = 0.418) was not related to brain glucose concentrations after accounting for serum glucose concentrations (Wald = 67.41, P < 0.001). In the presence of metabolic distress, increased insulin administration was associated with a relative reduction of interstitial brain glucose concentrations (Wald = 8.26, P = 0.017), independent of serum glucose levels. CONCLUSIONS: In the presence of metabolic distress, insulin administration is associated with reductions in brain glucose concentration that are independent of serum glucose levels. Further study is needed to understand how nutritional support and insulin administration can be optimized to minimize secondary injury after subarachnoid hemorrhage

    Regional Cerebral Oximetry as an Indicator of Acute Brain Injury in Adults Undergoing Veno-Arterial Extracorporeal Membrane Oxygenation–A Prospective Pilot Study

    Get PDF
    Background: Regional cerebral oxygen saturation (rScO2) measured by near-infrared spectroscopy (NIRS) can be used to monitor brain oxygenation in extracorporeal membrane oxygenation (ECMO). ECMO patients that develop acute brain injuries (ABIs) are observed to have worse outcomes. We evaluated the association between rScO2 and ABI in venoarterial (VA) ECMO patients.Methods: We retrospectively reviewed prospectively-collected NIRS data from patients undergoing VA ECMO from April 2016 to October 2016. Baseline demographics, ECMO and clinical characteristics, cerebral oximetry data, neuroradiographic images, and functional outcomes were reviewed for each patient. rScO2 desaturations were defined as a &gt;25% decline from baseline or an absolute value &lt; 40% and quantified by frequency, duration, and area under the curve per hour of NIRS monitoring (AUC rate, rScO2*min/h). The primary outcome was ABI, defined as abnormalities noted on brain computerized tomography (CT) or magnetic resonance imaging (MRI) obtained during or after ECMO therapy.Results: Eighteen of Twenty patients who underwent NIRS monitoring while on VA ECMO were included in analysis. Eleven patients (61%) experienced rScO2 desaturations. Patients with desaturations were more frequently female (73 vs. 14%, p = 0.05), had acute liver dysfunction (64 vs. 14%, p = 0.05), and higher peak total bilirubin (5.2 mg/dL vs. 1.4 mg/dL, p = 0.02). Six (33%) patients exhibited ABI, and had lower pre-ECMO Glasgow Coma Scale (GCS) scores (5 vs. 10, p = 0.03) and higher peak total bilirubin levels (7.3 vs. 1.4, p = 0.009). All ABI patients experienced rScO2 desaturation while 42% of patients without ABI experienced desaturation (p = 0.04). ABI patients had higher AUC rates than non-ABI patients (right hemisphere: 5.7 vs. 0, p = 0.01, left hemisphere: 119 vs. 0, p = 0.06), more desaturation events (13 vs. 0, p = 0.05), longer desaturation duration (2:33 vs. 0, p = 0.002), and more severe desaturation events with rScO2 &lt; 40 (9 vs. 0, p = 0.05). Patients with ABI had lower GCS scores (post-ECMO initiation) before care withdrawal or discharge than those without ABI (10 vs. 15, p = 0.02).Conclusions: The presence and burden of cerebral desaturations noted on NIRS cerebral oximetry are associated with secondary neurologic injury in adults undergoing VA ECMO

    Early neurological deterioration after subarachnoid haemorrhage: risk factors and impact on outcome

    Get PDF
    Background Early neurological deterioration occurs frequently after subarachnoid haemorrhage (SAH). The impact on hospital course and outcome remains poorly defined. Methods We identified risk factors for worsening on the Hunt–Hess grading scale within the first 24 h after admission in 609 consecutively admitted aneurysmal SAH patients. Admission risk factors and the impact of early worsening on outcome was evaluated using multivariable analysis adjusting for age, gender, admission clinical grade, admission year and procedure type. Outcome was evaluated at 12 months using the modified Rankin Scale (mRS). Results 211 patients worsened within the first 24 h of admission (35%). In a multivariate adjusted model, early worsening was associated with older age (OR 1.02, 95% CI 1.001 to 1.03; p=0.04), the presence of intracerebral haematoma on initial CT scan (OR 2.0, 95% CI 1.2 to 3.5; p=0.01) and higher SAH and intraventricular haemorrhage sum scores (OR 1.05, 95% CI 1.03 to 1.08 and 1.1, 95% CI 1.01 to 1.2; p less than 0.001 and 0.03, respectively). Early worsening was associated with more hospital complications and prolonged length of hospital stay and was an independent predictor of death (OR 12.1, 95% CI 5.7 to 26.1; p less than 0.001) and death or moderate to severe disability (mRS 4–6, OR 8.4, 95% CI 4.9 to 14.5; p=0.01) at 1 year. Conclusions Early worsening after SAH occurs in 35% of patients, is predicted by clot burden and is associated with mortality and poor functional outcome at 1 year

    Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: a retrospective observational study

    Get PDF
    Introduction: Cerebral glucose metabolism and energy production are affected by serum glucose levels. Systemic glucose variability has been shown to be associated with poor outcome in critically ill patients. The objective of this study was to assess whether glucose variability is associated with cerebral metabolic distress and outcome after subarachnoid hemorrhage. Methods: A total of 28 consecutive comatose patients with subarachnoid hemorrhage, who underwent cerebral microdialysis and intracranial pressure monitoring, were studied. Metabolic distress was defined as lactate/pyruvate ratio (LPR) >40. The relationship between daily glucose variability, the development of cerebral metabolic distress and hospital outcome was analyzed using a multivariable general linear model with a logistic link function for dichotomized outcomes. Results: Daily serum glucose variability was expressed as the standard deviation (SD) of all serum glucose measurements. General linear models were used to relate this predictor variable to cerebral metabolic distress and mortality at hospital discharge. A total of 3,139 neuromonitoring hours and 181 days were analyzed. After adjustment for Glasgow Coma Scale (GCS) scores and brain glucose, SD was independently associated with higher risk of cerebral metabolic distress (adjusted odds ratio = 1.5 (1.1 to 2.1), P = 0.02). Increased variability was also independently associated with in hospital mortality after adjusting for age, Hunt Hess, daily GCS and symptomatic vasospasm (P = 0.03). Conclusions: Increased systemic glucose variability is associated with cerebral metabolic distress and increased hospital mortality. Therapeutic approaches that reduce glucose variability may impact on brain metabolism and outcome after subarachnoid hemorrhage
    • …
    corecore