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ARTICLE

Serum glutamine and hospital-acquired
infections after aneurysmal subarachnoid
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Abstract
Objective
To understand nutritional and inflammatory factors contributing to serum glutamine levels and
their relationship to hospital-acquired infections (HAIs) after aneurysmal subarachnoid
hemorrhage (SAH).

Methods
A prospective observational study of patients with SAH who had measurements of daily caloric
intake and C-reactive protein, transthyretin, tumor necrosis factor α receptor 1a (TNFαR1a),
glutamine, and nitrogen balance performed within 4 preset time periods during the 14 days
after SAH. Factors associated with glutamine levels and HAIs were analyzed with multivariable
regression. HAIs were tracked daily for time-to-event analyses. Outcome 3 months after SAH
was assessed by the Telephone Interview for Cognitive Status and modified Rankin Scale.

Results
There were 77 patients with an average age of 55 ± 15 years. HAIs developed in 18 (23%) on
mean SAH day 8 ± 3. In a multivariable linear regression model, negative nitrogen balance (p =
0.02) and elevated TNFαR1a (p = 0.04) were independently associated with higher glutamine
levels during the study period. The 14-day mean glutamine levels were lower in patients who
developed HAI (166 ± 110 vs 236 ± 81 μg/mL, p = 0.004). Poor admission Hunt and Hess
grade (p = 0.04) and lower glutamine levels (p = 0.02) predicted time to first HAI. Low 14-day
mean levels of glutamine were associated with a poor recovery on the Telephone Interview for
Cognitive Status score (p = 0.03) and modified Rankin Scale score (p = 0.04) at 3 months after
injury.

Conclusions
Declining glutamine levels in the first 14 days after SAH are influenced by inflammation and
associated with an increased risk of HAI.
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Malnutrition has been associated with impaired immuno-
logic function leading to increased rates of infection.1 An
assessment of nutritional profiles measured by indirect cal-
orimetry found that patients with subarachnoid hemorrhage
(SAH) had average resting energy expenditure rates be-
tween 40% and 75% above baseline levels.2,3 We have de-
scribed an independent relationship between inflammation
and negative nitrogen balance that was predictive of
hospital-acquired infection (HAI) and long-term recovery
after SAH.4 As a further exploration of the relationship be-
tween protein catabolism and secondary injury after SAH,
we hypothesized that glutamine levels may have a significant
role in identifying patients at risk of developing secondary
complications with a rapid decline correlated to the de-
velopment of HAIs after SAH.

In non-SAH populations, a net negative energy balance has
been shown to result in protein catabolism and depletion of
amino acids necessary for cellular repair and host defenses.
Clinically this has been manifest by low levels of amino acids
such as glutamine.5 None of the previous studies have in-
vestigated the relationships among serum glutamine levels,
metabolic state, and outcome after SAH, where the stress
responses after SAH are similar to that observed in medical
illnesses such as acute respiratory distress syndrome and
sepsis.2 We investigated this relationship by analyzing levels
of serum glutamine and tumor necrosis factor α receptor 1a
(TNFαR1a) and time to HAI in a subset of patients pre-
viously enrolled in a prospective observational cohort study
of the sequelae of the immune-mediated malnutrition af-
ter SAH.

Methods
Patient selection and data collection
This is a retrospective analysis of a subset of consecutively
enrolled patients in a prospective observational study that had
available serum from all 4 predefined phases during the study
period4 and serum collected for amino acid and inflammatory
marker analysis. Clinical care for patients with SAH has been
described previously6 and conformed to established
guidelines.7,8 All underwent serial assessments of in-
flammatory and metabolic parameters during the first 14 days
after SAH in a systematic manner as previously reported.4

Inflammatory and metabolic parameters were measured
during the same 24 hours within each period. Data collection
was considered complete in instances when patients died or
were discharged from the hospital prior to completion of the
study period. The SAH data collection materials and practices

used in the ongoing SAH outcomes project have been pre-
viously described.4 All were tested at 3 months for functional
disability. Each patient was screened daily for the de-
velopment of infectious complications, using established cri-
teria for HAIs.9 We recorded the calendar date for each
infectious complication, which allowed for the quantification
of the true incidence of HAIs as those infections that de-
veloped ≥72 hours after ictus and for time-to-event analysis.10

Biomarker measurements

Quantitation of glutamine
Glutamine was measured in plasma samples using ultra-
performance liquid chromatography–tandem mass spec-
trometry. Glutamine was assayed in the plasma samples by
mixing 10 μL of plasma and 10 μL of internal standard with 1
mL of TDFHA (tridecafluoroheptanoic acid) in an LCMS
(liquid chromatography–mass spectrometry) vial. After vor-
texing for 5 minutes, the vial was placed in an autosampler
at 4°C.

Liquid chromatography–tandem mass spectrometry analysis
was performed on a platform comprising a triple quadrupole
Waters Xevo TQ-S (Waters, Milford, MA) equipped with an
electrospray ionization source and integrated with a Waters
Acquity UHPLC (ultra-high performance liquid chromatog-
raphy) controlled by MassLynx software 4.1. Chromato-
graphic separation was performed by injecting 5 μL of the
sample onto a Waters C18 BEH column (2.1 × 100 mm,
1.7 μm, 130 Å) equipped with a Vanguard BEHC18 pre-
column and maintained at 35°C. The flow rate was main-
tained at 650 μL/min. The initial flow conditions were 99.5%
solvent A (water containing 0.5 mm TDFHA) and 0.5%
solvent B (0.5 mm TDFHA in acetonitrile). Solvent B was
raised to 30% over 14 minutes and lowered back to 0.5% by
17.5 minutes and remained at initial conditions for a total run
time of 31.5 minutes. The retention time for glutamine was
2.02 minutes. The mass spectrometer was operated under
multiple reaction monitoring mode with positive electrospray
ionization with the following parameters: capillary voltage: 1.5
kV; cone gas flow: 300 L/h; desolvation gas: 1,200 L/h; and
gas temperature: 600°C. The multiple reaction monitoring
transition 146.9 > 83.9 was utilized for quantitation with cone
voltage 25 and collision energy 16. Peak integration and data
analysis were performed with TargetLynx 4.1 (Waters). Intra-
and interassay precision was <10%.

Quantitation of TNFαR1a
TNFαR1a was measured in plasma by Quantikine Human
sTNFR1a immunoassay (R&D Systems, Minneapolis, MN).

Glossary
CI = confidence interval; HAI = hospital-acquired infection; IQR = interquartile range; SAH = subarachnoid hemorrhage;
TDFHA = tridecafluoroheptanoic acid; TICS = Telephone Interview for Cognitive Status; TNFαR1a = tumor necrosis factor α
receptor 1a.
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Intra- and interassay precision was <5.0% and <8.8%, re-
spectively. Normal range is 484–1,407 pg/mL.

Outcome assessments
Outcome was assessed prospectively 3 months post-
hemorrhage with a 7-point version of the modified Rankin
Scale rated from death to symptom-free full recovery11 and
the Telephone Interview for Cognitive Status (TICS).12 All
clinical and outcome endpoints were classified according to
a priori criteria and adjudicated at a weekly research meeting,
as previously described.4

Statistical analysis
Given this was a retrospective analysis, we did not perform
a sample size calculation a priori. The sample size was based
on the last 77 consecutive subjects enrolled in the previous
cohort study. Continuous variables were assessed for

normality and reported using accepted standards for para-
metric and nonparametric data. Categorical variables were
reported as count and proportions in each group. Low 14-day
mean serum glutamine levels were defined as values below the
14-day mean glutamine level. Multivariable linear regression
analyses were performed to determine factors associated with
serum glutamine levels by entering in those factors found to
have a p value ≤0.1 on univariate analysis. The occurrence of
the first HAI was treated as a censored event by postbleed day
and corresponding study period. Baseline characteristics that
were found on univariate analysis to be associated (p ≤ 0.1)
withHAI were entered into a Cox proportional hazards model
to calculate hazard ratios and corresponding 95% confidence
interval (CI) for developing HAI. Tests for interaction were
performed and reported when found to be significant. For all
tests, significance was set at p < 0.05. All analyses were per-
formed with SPSS version 24.0 (IBM Corp., Armonk, NY).

Table 1 Baseline characteristics of patients with subarachnoid hemorrhage

Admission characteristics

Hospital-acquired infection

p ValueNo (n = 59) Yes (n = 18)

Age, y, mean (SD) 54 (13) 58 (12) 0.13

Women, n (%) 37 (63) 14 (78) 0.27

Body mass index, kg/m2 30 (7) 34 (11) 0.04

Medical history, n (%)

Hypertension 23 (39) 10 (56) 0.21

Diabetes mellitus 3 (5) 2 (11) 0.33

Ethnicity, n (%) 0.43

Black 14 (24) 4 (22)

White, non-Hispanic 21 (36) 5 (28)

White, Hispanic 22 (37) 7 (39)

Asian 2 (3) 2 (11)

Aneurysm clipping, n (%) 40 (68) 11 (61) 0.6

APACHE II score 12 (7) 18 (8) 0.002

Hunt and Hess grade, n (%) 0.004

1 and 2: headache 35 (59) 5 (29)

3: stupor 12 (20) 3 (17)

4: obtunded 8 (14) 7 (39)

5: Coma 4 (7) 3 (17)

Modified Fisher score, n (%) 0.43

1: thin clot 16 (27) 3 (17)

2: thin clot and IVH 0 (0) 1 (6)

3: thick clot 32 (54) 5 (28)

4: thick clot and IVH 11 (19) 9 (50)

Abbreviations: APACHE II = Acute Physiology and Chronic Health Evaluation II; IVH = intraventricular hemorrhage.
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Standard protocol approvals, registrations,
and patient consents
Consent and conduct of this study were approved by the
institutional review board and consistent with guiding prin-
ciples for research involving humans.13

Data availability
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Results
Patient characteristics
There were 77 patients that underwent serum glutamine and
TNFαR1a analysis, with a mean age of 55 ± 15 years, 66%
women, a median admission Hunt and Hess grade of 2, and
modified Fisher score of 3. During the first 14 days after
hemorrhage, 18 patients (23%) developed an HAI. Baseline
comparisons of patients by HAI status are shown in table 1.
Pneumonia was the most common infection, occurring in 15
patients (19%), followed by urinary tract infections (n = 11,
15%), meningitis (n = 6, 8%), and blood stream infections (n
= 2, 3%).

Factors associated with serum
glutamine levels
The mean serum TNFαR1a level during the study period was
1,228.25 ± 606.6 pg/mL and glutamine 219.4 ± 94 μg/mL.
There was a progressive decline in the serum glutamine levels
over the 14-day study period (analysis of variance F test, p <
0.001) In a multivariate linear regression model adjusting for
admission Hunt and Hess grade, modified Fisher score, and
caloric intake, serum glutamine levels were found to be

associated with a net negative nitrogen balance (β: 5.023; 95%
CI: 0.806–9.241, p = 0.02) and TNFαR1a levels (β: −0.036;
95% CI: −0.07 to −0.002, p = 0.04).

Outcome assessments
HAI developed on postbleed day 8 ± 3. Patients developing
HAI had lower serum glutamine levels (232 ± 83 vs 163 ±
112 μg/mL, p = 0.01) and higher TNFαR1a levels (1,503 ±
543 vs 1,138 ± 611 pg/mL, p = 0.03). A graphical represen-
tation of serum glutamine and TNFαR1a levels over the study
period by HAI status is shown in figure 1. In a univariate
model, a low mean serum glutamine level (<219 μg/mL) was
associated with time to development of an HAI by postbleed
day 14 (figure 2). Low 14-day mean serum glutamine level as
well as admission Hunt and Hess grade were associated with
time to development of HAI after correcting for caloric intake,
age, mechanical ventilation, and body mass index (table 2).
The median (25th %ile, 75th %ile) 3-month modified Rankin
Scale score was 2 (1, 4), with a 12% (9/77) mortality rate. On
univariate analysis, patients with a low mean 14-day serum
glutamine level were associated with a lower median TICS
score (28; interquartile range [IQR]: 15] vs 33 [IQR: 7], p =
0.03) and higher median modified Rankin Scale score (3
[IQR: 3] vs 2 [IQR: 3], p = 0.04) at 3 months after injury. In
separate multivariable models adjusting for age, Hunt and
Hess grade, and occurrence of delayed cerebral ischemia,
a low mean 14-day serum glutamine level was not associated
with a lower modified Rankin Scale score or TICS score.

Discussion
We found that rapidly declining serum glutamine that was
linked to net negative nitrogen balance and inflammation was

Figure 1 Relationship between serum glutamine TNFαR1a levels and HAIs

(A) Difference between serumglutamine levels in thosewhodevelopedHAI vs thosewhodidnot developHAI. (B) Difference between serumTNFαR1a levels in
those who developed HAI vs those who did not develop HAI. HAI = hospital-acquired infection; TNF = tumor necrosis factor; TNFαR1a = TNF-α receptor 1a.
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associated with a significantly shorter time to development of
HAI within the first 14 days after SAH. Furthermore, on
univariate analysis, low 14-day mean serum glutamine levels
were associated with poor cognitive and functional recovery 3
months after injury.

Similar findings with protein energy catabolism leading to
glutamine depletion and HAIs have been identified in non-
SAH populations.5 Glutamine serves as a vital cell-signaling
molecule in states of illness and injury14 and regulate the
expression of many genes related to metabolism, signal
transduction, cell defense, and repair, and to activate in-
tracellular signaling pathways.15 The release of glutamine
from muscle and other sources after stress, illness, and injury
serves as a “stress signal,” which results in activation of genes
vital to cellular protection and immune regulation.16 The
presence of adequate circulating glutamine is likely an im-
portant factor in preserving cellular energetics, preservation of
muscle mass, and supporting immune function during critical
illness.

This study has limitations worth noting. The patients in this
retrospective analysis are a subset of a previous prospective
study, and as a result, our conclusions are limited by the post
hoc analysis. As such, we cannot eliminate the possibility that
TNFαR1a rose in response to infection, and although our

analyses do indicate a strong relationship between glutamine
and TNFαR1a, we cannot prove causality in this pilot study.
However, the rates of infection are similar to our larger cohort
study, and by selecting consecutive patients without regard to
their outcomes, we believe any selection bias was minimized.
In addition, our results may be inadequately powered, al-
though they do provide preliminary evidence for a link be-
tween declining serum glutamine levels and infectious
complications after SAH. Finally, as we previously noted,4 our
outcome measures of TICS and modified Rankin Scale may
not be appropriate measures of recovery related to malnu-
trition. Preserved motor strength, physical recovery, and fa-
tigue are likely better markers of the true influence of
immune-mediated malnutrition on outcome after critical
illness.17

A composite view of our results from this and previous studies
indicates that malnutrition, related to hypermetabolism, un-
derfeeding, and inflammation-mediated protein catabolism is
prevalent after SAH and associated with short-term secondary
injury and long-term poor outcome.4,18–20 Aspects related to
undernutrition may be modifiable, but recent studies indicate
that the overall amount of caloric delivery may not be as
important as specific substrate delivery.21,22 Protein energy
malnutrition may be a suitable target for intervention with
amino acid supplementation focusing on a reduction of in-
fectious complications and improving recovery. Alternatively,
the decrement in glutaminemay represent epiphenomenon of
inflammatory disease and may only signal risk.

One aspect of malnutrition-related injury and recovery not
addressed by current studies involves the influence of acute
muscle wasting on physical recovery and fatigue after SAH.
Muscle wasting is directly linked to a catabolic state, and
recent intervention studies have demonstrated an ability to
reduce muscle wasting with a targeted nutritional supple-
mentation and exercise regimen.23 A dual-therapy approach
may be a reasonable next step to better understand the
implications of malnutrition and methods by which to opti-
mize physical recovery after SAH.
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