23 research outputs found
A randomized controlled trial of amyloid positron emission tomography results disclosure in mild cognitive impairment
IntroductionRecent studies suggest that Alzheimer’s disease (AD) biomarker disclosure has no discernable psychological impact on cognitively healthy persons. Far less is known about how such results affect symptomatic individuals and their caregivers.MethodsRandomized controlled trial of 82 mild cognitive impairment (MCI) patient and caregiver dyads (total n = 164) to determine the effect of receiving amyloid positron emission tomography results on understanding of, and perceived efficacy to cope with, MCI over 52 weeks of follow‐up.ResultsGains in the primary outcomes were not consistently observed. Amyloid negative patients reported greater perceived ambiguity regarding MCI at follow‐up, while moderate and sustained emotional distress was observed in patients, and to a lesser extent, caregivers, of those who were amyloid positive. There was no corresponding increase in depressive symptoms.DiscussionThese findings point to the possibility that both MCI patients and caregivers may need emotional support after the disclosure of amyloid scan results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163444/2/alz12129_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163444/1/alz12129.pd
Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.
BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500
Community-Based Activity and Sedentary Patterns Are Associated With Cognitive Performance in Mobility-Limited Older Adults
Over the last few decades, considerable evidence shows that greater levels of aerobic exercise and cardiovascular fitness benefit cognitive performance. However, the degree to which free-living activity in community settings is related to cognitive performance remains unclear, particularly in older adults vulnerable to disability. Also, it is unknown whether the manner in which daily physical activity (PA) and sedentary time are accumulated throughout the day is associated with cognition. Cross-sectional associations between accelerometer-characterized PA and sedentary patterns and cognitive performance were examined in 1,274 mobility-limited older adults. Percent time spent in various bout lengths of PA (≥1, ≥2, and ≥5 min) and sedentary (≥1, ≥30, and ≥60 min) was defined as the number of minutes registered divided by total wear time × 100. Percent time was then tertiled for each bout length. Multiple linear regression models were used to estimate the associations between accelerometer bout variables and separate cognitive domains that included processing speed (Digit Symbol Coding; DSC), immediate and delayed recall (Hopkins Verbal Learning Test; HVLT), information processing and selective attention (Flanker), working memory (n-back), reaction time (switch and non-switch reaction time), and a composite score that averaged results from all cognitive tests. After adjusting for demographics, behavioral factors, and morbid conditions, more time spent in PA was associated with higher DSC for all bout lengths (p < 0.03 for all). Higher PA was associated with higher HVLT and global cognition scores but only for longer bout lengths (p < 0.05 for all). The association was largely driven by participants who spent the lowest amount of time performing activity while awake (p < 0.04). An inverse linear relationship was observed between total sedentary time and DSC (p = 0.02), but not for other measures of cognition. These results suggest that, while higher PA was associated with higher cognitive performance, PA’s association with memory was sensitive to bout duration. The time, but not the manner, spent in sedentary behaviors showed a minor association with executive function. Further research is warranted to characterize longitudinal changes in daily activity and sedentary patterns as potential biophysical markers of cognitive status in older adults
Gait and Working Memory in Alzheimer’s Disease, Aging and Small Vessel Cerebrovascular Disease
This thesis first explored the effects of concurrent spatial attention and working memory task performance on over-ground gait in healthy young and older adults. It then compared over-ground gait parameters and working memory performance in mild Alzheimer’s Disease (AD) and normal controls (NC) and investigated costs of dual-tasking on working memory performance and cadence during treadmill walking at preferred walking speed in the two groups. Furthermore, it explored these differences in AD and NC groups in relation to their subcortical hyperintensities (SH) that were rated using standardized scales on MRI. Reaction times and accuracy on working memory performance measures were collected under single and dual task conditions. Over-ground gait parameters were measured on an automated walkway. Costs of dual-tasking on gait parameters and working memory performance were measured at a constant velocity on a treadmill. The hypotheses that working memory influences gait performance and that a higher SH burden negatively influences over-ground gait and costs of dual-task conditions, were supported in a series of experiments. Gait slowed down while performing working memory and spatial attention tasks in young and older adults. Patients with mild AD, compared to NC, had a slower gait velocity, shorter stride length and lower cadence on the walkway. When the two groups were subdivided into higher and lower SH groups based on their median SH score, the NC group with lower SH burden walked significantly faster with a higher cadence and a longer stride length than the other three groups. Lastly, a higher SH burden negatively influenced working memory performance in NC while in mild AD patients, it had negative influences on adaptive changes in gait while dual-tasking. These results suggest that, in dual-task condition, SH interfere with processing speed in NC and on gait in AD. These findings provide new insights in to tradeoffs during dual tasking in relation to cerebrovascular disease. This has ecological implications because of the prevalence of small vessel disease in aging and dementia, may impact on predicting falls in AD.Ph
Association Between Cerebellar Gray Matter Volumes, Gait Speed, and Information-Processing Ability in Older Adults Enrolled in the Health ABC Study
BackgroundThe cerebellum plays an important role in mobility and cognition. However, it is unclear which regions of the cerebellum are associated with gait speed and information-processing ability in older adults without overt brain damage.MethodsCross-sectional associations between cerebellar gray matter volumes (GMV), gait speed, and information-processing ability were explored in 231 community-dwelling adults (mean age: 83 years, 48% black, 58% female). We measured gait speed on an automated walkway and information-processing ability on the Digit Symbol Substitution test (DSST). Total and regional cerebellar GMV was measured on 3T-magnetic resonance imaging. Lobar GMV of the cerebellum, obtained by an automated parcellation process, were aggregated based on the cognitive (lobules VI, VII, VIII and crus I, II), sensorimotor (lobules II, IV, V), and vestibular (lobules IX and X) functions ascribed to the cerebellar regions.ResultsLarger cerebellar GMV correlated with faster gait speed and superior DSST scores (both p < .001) independent of age, gender, atrophy, and small vessel disease. After adjusting for age, gender, and atrophy, larger cognitive cerebellar GMV correlated with both faster gait speed (p = .04) and higher DSST scores (p < .001), larger sensorimotor cerebellar GMV correlated significantly with DSST alone (p = .02), and the vestibular cerebellar GMV with neither. The association between cognitive cerebellar GMV and gait speed was no longer significant after adjusting for DSST score in the linear regression models.ConclusionsThe relationship between gait speed and cerebellar GMV is influenced by information-processing ability, and this relationship is stronger in subregions ascribed to cognitive than vestibular or sensorimotor functions
Recommended from our members
Complex Walking Tasks and Risk for Cognitive Decline in High Functioning Older Adults
BACKGROUND:Performance on complex walking tasks may provide a screen for future cognitive decline. OBJECTIVE:To identify walking tasks that are most strongly associated with subsequent cognitive decline. METHODS:Community-dwelling older adults with Modified Mini-Mental State (3MS) >85 at baseline (n = 223; mean age = 78.7, 52.5% women, 25.6% black) completed usual-pace walking and three complex walking tasks (fast-pace, narrow-path, visuospatial dual-task). Slope of 3MS scores for up to 9 subsequent years (average = 5.2) were used to calculate a cognitive maintainer (slope ≥0) or decliner (slope <0) outcome variable. Logistic regression models assessed associations between gait speeds and being a cognitive decliner. A sensitivity analysis in a subsample of individuals (n = 66) confirmed results with adjudicated mild cognitive impairment (MCI) or dementia at 8-9 years post-walking assessment. RESULTS:Cognitive decliners were 52.5% of the sample and on average were slower for all walking tasks compared to maintainers. In models adjusted for demographic and health variables, faster fast-pace (OR = 0.87 per 0.1 m/s, 95% CI: 0.78, 0.97) and dual-task (OR = 0.84 per 0.1 m/s, 95% CI: 0.73, 0.96) gait speeds were associated with lower likelihood of being a cognitive decliner. Usual-pace gait speed was not associated (OR = 0.96 per 0.1 m/s, 95% CI: 0.85, 1.08). Results were nearly identical in analyses with adjudicated MCI or dementia as the outcome. CONCLUSION:Fast-pace and dual-task walking may provide simple and effective tools for assessing risk for cognitive decline in older individuals with high cognitive function. Such screening tools are important for strategies to prevent or delay onset of clinically meaningful change
Recommended from our members
Slow gait, white matter characteristics, and prior 10-year interleukin-6 levels in older adults
ObjectiveTo examine the relationship between gait speed and prior 10 years interleukin-6 (IL-6) burden in older adults. We then assessed whether white matter characteristics influence this relationship.MethodsIn 179 community-dwelling older adults, gait speed was assessed on an automated walkway and serum IL-6 was assayed on ELISA. Concurrently, white matter characteristics were assessed on MRI by quantifying volume of white matter hyperintensities (WMH), a marker of small vessel disease, and normal-appearing white matter on fractional anisotropy (NAWM-FA), a marker of axonal integrity. IL-6 was assayed at regular intervals at gait assessment and over the prior 10 years and estimates of sustained 10-year IL-6 exposure and the rate of change in IL-6 over 10 years were obtained. Multivariate linear regressions were used to examine the relationships among sustained IL-6 exposure, rate of change in IL-6, gait speed, and white matter characteristics.ResultsIn this sample (age 83 years, 58% female, 41% black, gait speed 0.9 m/s), higher sustained IL-6 levels, but not the rate of change in IL-6 or IL-6 at gait assessment, was significantly related to slower gait (β = -0.27, p < 0.001) and to higher WMH (β = 0.23, p = 0.002), but not NAWM-FA, withstanding covariate adjustments. WMH accounted for 30% attenuation in the relationship between higher sustained IL-6 levels and slower gait speed (p = 0.043) in the mediation analyses.ConclusionsSustained exposure to high IL-6 over 10 years rather than the rate of change in IL-6 or an isolated high IL-6 level may adversely affect gait speed by influencing cerebral WMH