65 research outputs found

    Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes.

    No full text
    We studied the influence of glucose/glucose 6-phosphate cycling on glycogen deposition from glucose in fasted-rat hepatocytes using S4048 and CP320626, specific inhibitors of glucose-6-phosphate translocase and glycogen phosphorylase respectively. The effect of amino acids and oleate was also examined. The following observations were made: (1) with glucose alone, net glycogen production was low. Inhibition of glucose-6-phosphate translocase increased intracellular glucose 6-phosphate (3-fold), glycogen accumulation (5-fold) without change in active (dephosphorylated) glycogen synthase (GSa) activity, and lactate production (4-fold). With both glucose 6-phosphate translocase and glycogen phosphorylase inhibited, glycogen deposition increased 8-fold and approached reported in vivo rates of glycogen deposition during the fasted-->fed transition. Addition of a physiological mixture of amino acids in the presence of glucose increased glycogen accumulation (4-fold) through activation of GS and inhibition of glucose-6-phosphatase flux. Addition of oleate with glucose present decreased glycolytic flux and increased the flux through glucose 6-phosphatase with no change in glycogen deposition. With glucose 6-phosphate translocase inhibited by S4048, oleate increased intracellular glucose 6-phosphate (3-fold) and net glycogen production (1.5-fold), without a major change in GSa activity. It is concluded that glucose cycling in hepatocytes prevents the net accumulation of glycogen from glucose. Amino acids activate GS and inhibit flux through glucose-6-phosphatase, while oleate inhibits glycolysis and stimulates glucose-6-phosphatase flux. Variation in glucose 6-phosphate does not always result in activity changes of GSa. Activation of glucose 6-phosphatase flux by fatty acids may contribute to the increased hepatic glucose production as seen in Type 2 diabetes

    Mobile and non-mobile catalysts for diesel-particulate combustion: a kinetic study

    No full text
    One of the potential ways to solve the problem of diesel particulate emission from both stationary and mobile sources is the use of traps carrying a suitable catalyst for promoting particulate combustion as soon as it is filtered. A Cu-K-V based catalyst, considered among the most promising in the literature, the KVO3+CsCl and the K0.7Cu0.3VO3+KCl catalysts were prepared and investigated. Their performance was compared to a reference V2O5 catalyst. The superior performance of the Cu-K-V catalyst is based on the grounds of both microreactor (temperature programmed combustion) and catalytic trap tests. Based on experimental data and modelling calculations, this paper elucidates how the mobility of catalyst components is the main reason for such an outcome performance and is a prerequisite to achieve an activity sufficient for trap self-regeneration
    • …
    corecore