164 research outputs found
Validity of energy expenditure estimation methods during 10 days of military training
Wearable physical activity (PA) monitors have improved the ability to estimate free-living total energy expenditure (TEE) but their application during arduous military training alongside more well-established research methods has not been widely documented. This study aimed to assess the validity of two wrist-worn activity monitors and a PA log against doubly-labelled water (DLW) during British Army Officer Cadet (OC) training. For 10 days of training, twenty (10 male and 10 female) OCs (mean ± SD: age 23 ± 2 years, height 1.74 ± 0.09 m, body mass 77.0 ± 9.3 kg) wore one research-grade accelerometer (GENEActiv, Cambridge, UK) on the dominant wrist, wore one commercially-available monitor (Fitbit SURGE, USA) on the non-dominant wrist and completed a self-report PA log. Immediately prior to this 10-day period, participants consumed a bolus of DLW and provided daily urine samples, which were analysed by mass spectrometry to determine TEE. Bivariate correlations and limits of agreement (LoA) were employed to compare TEE from each estimation method to DLW. Average daily TEE from DLW was 4112 ± 652 kcal·day against which the GENEActiv showed near identical average TEE (mean bias ± LoA: -15 ± 851 kcal day ) while Fitbit tended to underestimate (-656 ± 683 kcal·day ) and the PA log substantially overestimate (+1946 ± 1637 kcal·day ). Wearable physical activity monitors provide a cheaper and more practical method for estimating free-living TEE than DLW in military settings. The GENEActiv accelerometer demonstrated good validity for assessing daily TEE and would appear suitable for use in large-scale, longitudinal military studies
Subjective wellbeing among young dancers with disabilities
Little is known about the subjective wellbeing (SWB) of young dancers with disabilities and whether it changes over time. The aim of this study was to assess the SWB of young dancers with disabilities enrolled on an extracurricular inclusive talent development programme in the UK at two time points. Twenty-two young dancers completed the Personal Wellbeing Index for people with intellectual disability at the beginning of the academic year. Thirteen dancers completed the questionnaire a second time towards the end of the academic year. Scores were compared with normative values, and a Wilcoxon Signed Rank test was conducted to assess change over time. The participants reported high levels of SWB at both time points in comparison with normative values. There was no significant change in wellbeing scores over time. The study contributes to a growing body of literature suggesting that people with disabilities have high levels of SWB. Although causality cannot be assumed, inclusive dance programmes may contribute to SWB and allow young people with disabilities to overcome the barriers associated with physical activity
Nutrition and Physical Activity during British Army Officer Cadet Training: Part 1 - Energy Balance and Energy Availability
Military training is characterised by high daily energy expenditures (EE) which are difficult to match with energy intake (EI) potentially resulting in negative energy balance (EB) and low energy availability (EA). The aim of this study was to quantify EB and EA during British Army Officer Cadet (OC) training. Thirteen (seven women) OCs (mean ± SD: age 24 ± 3 years) volunteered to participate. EB and EA were estimated from EI (weighing of food and food diaries) and EE (doubly-labelled water) measured in three periods of training; nine days on-camp (CAMP), a five-day field exercise (FEX) and a nine-day mixture of both (MIX). Variables were compared by condition and gender with a repeated measures ANOVA. Negative EB was greatest during FEX (-2197 ± 455 kcal·d-1) compared with CAMP (-692 ± 506 kcal·d-1; p<0.001) and MIX (-1280 ± 309 kcal·d-1; p<0.001). EA was greatest in CAMP (23 ± 10 kcal·d-1) compared with FEX (1 ± 16 kcal·d-1; p=0.002) and MIX (10 ± 7 kcal·d-1; p=0.003), with no apparent difference between FEX and MIX (p=0.071). Irrespective of condition, there were no apparent differences between gender in EB (p=0.375) or EA (p=0.385). These data can be used to inform evidenced-based strategies to manage EA and EB during military training and enhance the health and performance of military personnel
Core outcome measurement instruments for use in clinical and research settings for adults with post-COVID-19 condition: an international Delphi consensus study.
Post-COVID-19 condition (also known as long COVID) is a new, complex, and poorly understood disorder. A core outcome set (COS) for post-COVID-19 condition in adults has been developed and agreement is now required on the most appropriate measurement instruments for these core outcomes. We conducted an international consensus study involving multidisciplinary experts and people with lived experience of long COVID. The study comprised a literature review to identify measurement instruments for the core outcomes, a three-round online modified Delphi process, and an online consensus meeting to generate a core outcome measurement set (COMS). 594 individuals from 58 countries participated. The number of potential instruments for the 12 core outcomes was reduced from 319 to 19. Consensus was reached for inclusion of the modified Medical Research Council Dyspnoea Scale for respiratory outcomes. Measures for two relevant outcomes from a previously published COS for acute COVID-19 were also included: time until death, for survival, and the Recovery Scale for COVID-19, for recovery. Instruments were suggested for consideration for the remaining nine core outcomes: fatigue or exhaustion, pain, post-exertion symptoms, work or occupational and study changes, and cardiovascular, nervous system, cognitive, mental health, and physical outcomes; however, consensus was not achieved for instruments for these outcomes. The recommended COMS and instruments for consideration provide a foundation for the evaluation of post-COVID-19 condition in adults, which should help to optimise clinical care and accelerate research worldwide. Further assessment of this COMS is warranted as new data emerge on existing and novel measurement instruments
EGFR oligomerization organizes kinase-active dimers into competent signalling platforms
Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling
Pulmonary SARS-CoV-2 infection leads to para-infectious immune activation in the brain
Neurological complications, including encephalopathy and stroke, occur in a significant proportion of COVID-19 cases but viral protein is seldom detected in the brain parenchyma. To model this situation, we developed a novel low-inoculum K18-hACE2 mouse model of SARS-CoV-2 infection during which active viral replication was consistently seen in mouse lungs but not in the brain. We found that several mediators previously associated with encephalopathy in clinical samples were upregulated in the lung, including CCL2, and IL-6. In addition, several inflammatory mediations, including CCL4, IFNγ, IL-17A, were upregulated in the brain, associated with microglial reactivity. Parallel in vitro experiments demonstrated that the filtered supernatant from SARS-CoV-2 virion exposed brain endothelial cells induced activation of uninfected microglia. This model successfully recreates SARS-CoV-2 virus-associated para-infectious brain inflammation which can be used to study the pathophysiology of the neurological complications and the identification of potential immune targets for treatment
Risk behaviors in a rural community with a known point-source exposure to chronic wasting disease
<p>Abstract</p> <p>Background</p> <p>The emergence and continuing spread of Chronic Wasting Disease (CWD) in cervids has now reached 14 U.S. states, two Canadian provinces, and South Korea, producing a potential for transmission of CWD prions to humans and other animals globally. In 2005, CWD spread for the first time from the Midwest to more densely populated regions of the East Coast. As a result, a large cohort of individuals attending a wild game feast in upstate New York were exposed to a deer that was subsequently confirmed positive for CWD.</p> <p>Methods</p> <p>Eighty-one participants who ingested or otherwise were exposed to a deer with chronic wasting disease at a local New York State sportsman's feast were recruited for this study. Participants were administered an exposure questionnaire and agreed to follow-up health evaluations longitudinally over the next six years.</p> <p>Results</p> <p>Our results indicate two types of risks for those who attended the feast, a <it>Feast Risk </it>and a G<it>eneral Risk</it>. The larger the number of risk factors, the greater the risk to human health if CWD is transmissible to humans. Long-term surveillance of feast participants exposed to CWD is ongoing.</p> <p>Conclusion</p> <p>The risk data from this study provide a relative scale for cumulative exposure to CWD-infected tissues and surfaces, and those in the upper tiers of cumulative risk may be most at risk if CWD is transmissible to humans.</p
Author Correction: Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses
Correction to: Nature Communications https://doi.org/10.1038/s41467-023-42320-4, published online 22 December 202
Para-infectious Brain Injury in Covid-19 Persists at Follow-up Despite Attenuated Cytokine and Autoantibody Responses
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
- …