4 research outputs found
Fracture testing of lithiumâion battery cathode secondary particles inâsitu inside the scanning electron microscope
Fracture of cathode secondary particles is a critical degradation mechanism in lithium-ion batteries. The microindentation strength of LiNi0.8Mn0.1Co0.1O2 secondary particles is measured inâ
situ in the scanning electron microscope (SEM), enabling dynamical imaging of fracture. Crack propagation is intergranular between primary particles when induced by compressing between flat platens (analogous to calendaring), and with a cono-spherical indenter (representing particle-particle contact). Fracture occurs directly beneath the cono-spherical tip and at the centre of secondary particles when compressed between flat platens. Finite element modelling of stress states provides insight into the dependence of fracture load upon cohesive strength and particle toughness. Secondary particle indentation strength decreases with increasing secondary particle size, with cycling, and with increasing state of charge. The indentation strength decrease is greatest in earlier stages of delithiation. The novel microindentation technique allows assessment of strength and toughness of different cathode morphologies, aiding prediction of optimal particle structure and processing conditions
A general mechanism for controlling thin film structures in all-conjugated block copolymer : fullerene blends
Block copolymers have the potential to self-assemble into thermodynamically stable nanostructures that are desirable for plastic electronic materials with prolonged lifetimes. Fulfillment of this potential requires the simultaneous optimisation of the spatial organisation and phase behaviour of heterogeneous thin films at the nanoscale. We demonstrate the controlled assembly of an all-conjugated diblock copolymer blended with fullerene. The crystallinity, nanophase separated morphology, and microscopic features are characterised for blends of poly(3-hexylthiophene-block-3-(2-ethylhexyl) thiophene) (P3HT-b-P3EHT) and phenyl-C61-butyric acid methyl ester (PCBM), with PCBM fractions varying from 0â65 wt%. We find that PCBM induces the P3HT block to crystallise, causing nanophase separation of the block copolymer. Resulting nanostructures range from ordered (lamellae) to disordered, depending on the amount of PCBM. We identify the key design parameters and propose a general mechanism for controlling thin film structure and crystallinity during the processing of semicrystalline block copolymers
An introduction to perovskites for solar cells and their characterisation
Perovskite solar cells are one of the most active areas of renewable energy research at present. The primary research objectives are to improve their optoelectronic properties and long-term stability in different environments. In this paper, we discuss the working principles of hybrid perovskite photovoltaics and compare them to the competing photovoltaic technologies of inorganic and organic photovoltaics. The current challenges that hinder the commercialisation of perovskite solar cells are then discussed. This is followed by a description of perovskite material properties and some characterisation techniques commonly used to assess perovskite properties, fabrication processes including the use of antisolvents, and degradation mechanisms. We intend that this work should serve as a beginner's guide to the study of perovskite solar cells
Structural insight into protective alumina coatings for layered Li-Ion cathode materials by solid-state NMR spectroscopy
Layered transition metal oxide cathode materials can exhibit high energy densities in Li-ion batteries, in particular, those with high Ni contents such as LiNiO2. However, the stability of these Ni-rich materials often decreases with increased nickel content, leading to capacity fade and a decrease in the resulting electrochemical performance. Thin alumina coatings have the potential to improve the longevity of LiNiO2 cathodes by providing a protective interface to stabilize the cathode surface. The structures of alumina coatings and the chemistry of the coatingâcathode interface are not fully understood and remain the subject of investigation. Greater structural understanding could help to minimize excess coating, maximize conductive pathways, and maintain high capacity and rate capability while improving capacity retention. Here, solid-state nuclear magnetic resonance (NMR) spectroscopy, paired with powder X-ray diffraction and electron microscopy, is used to provide insight into the structures of the Al2O3 coatings on LiNiO2. To do this, we performed a systematic study as a function of coating thickness and used LiCoO2, a diamagnetic model, and the material of interest, LiNiO2. 27Al magic-angle spinning (MAS) NMR spectra acquired for thick 10 wt % coatings on LiCoO2 and LiNiO2 suggest that in both cases, the coatings consist of disordered four- and six-coordinate AlâO environments. However, 27Al MAS NMR spectra acquired for thinner 0.2 wt % coatings on LiCoO2 identify additional phases believed to be LiCo1âxAlxO2 and LiAlO2 at the coatingâcathode interface. 6,7Li MAS NMR and T1 measurements suggest that similar mixing takes place near the interface for Al2O3 on LiNiO2. Furthermore, reproducibility studies have been undertaken to investigate the effect of the coating method on the local structure, as well as the role of the substrate