392 research outputs found
Spotting Trees with Few Leaves
We show two results related to the Hamiltonicity and -Path algorithms in
undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10].
First, we demonstrate that the technique used can be generalized to finding
some -vertex tree with leaves in an -vertex undirected graph in
time. It can be applied as a subroutine to solve the
-Internal Spanning Tree (-IST) problem in
time using polynomial space, improving upon previous algorithms for this
problem. In particular, for the first time we break the natural barrier of
. Second, we show that the iterated random bipartition employed by
the algorithm can be improved whenever the host graph admits a vertex coloring
with few colors; it can be an ordinary proper vertex coloring, a fractional
vertex coloring, or a vector coloring. In effect, we show improved bounds for
-Path and Hamiltonicity in any graph of maximum degree
or with vector chromatic number at most 8
Polynomial Kernels for Weighted Problems
Kernelization is a formalization of efficient preprocessing for NP-hard
problems using the framework of parameterized complexity. Among open problems
in kernelization it has been asked many times whether there are deterministic
polynomial kernelizations for Subset Sum and Knapsack when parameterized by the
number of items.
We answer both questions affirmatively by using an algorithm for compressing
numbers due to Frank and Tardos (Combinatorica 1987). This result had been
first used by Marx and V\'egh (ICALP 2013) in the context of kernelization. We
further illustrate its applicability by giving polynomial kernels also for
weighted versions of several well-studied parameterized problems. Furthermore,
when parameterized by the different item sizes we obtain a polynomial
kernelization for Subset Sum and an exponential kernelization for Knapsack.
Finally, we also obtain kernelization results for polynomial integer programs
- …