5 research outputs found

    Determining Induction Conditions for Expression of Truncated Diphtheria Toxin and Pseudomonas Exotoxin A in E. coli BL21

    Get PDF
    Background: Targeted cancer therapies have played a great role in the treatment of malignant tumors, in the recent years. Among these therapies, targeted toxin therapies such as immunotoxins, has improved the patient’s survival rate by minimizing the adverse effect on normal tissues, whereas delivering a high dose of tumoricidal agent for eradicating the cancer tissue. Immunological proteins such as antibodies are conjugated to plant toxins or bacterial toxins such as Diphtheria toxin (DT) and Pseudomonas exotoxin A (PE) . In this case optimizing and expressing Diphtheria toxin and Pseudomonas exotoxin A which their binding domains are eliminated play a crucial role in producing the desired immunotoxins.Materials and Methods: We expressed the truncated DT and PE toxin in a genetically modified E.coli strain BL21 (DE3). For this reason we eliminated the binding domain sequences of these toxins and expressed these proteins in an expression vector pET28a with the kanamycin resistant gene for selection. The optimization of Diphtheria toxin and Pseudomonas exotoxin A expression was due to different IPTG concentration, induction and sonication time. Results: We observed that the optimal protein expression of the Diphtheria toxin was gained in 4 hours of 0.4 mM IPTG concentration at 25˚C on the other hand the optimization of Pseudomonas exotoxin A protein occurred in 4 hours of 0.5 mM IPTG concentration at 25 ˚C.Conclusion: Our study also showed lower IPTG concentrations could result in higher protein expression. By optimizing this procedure, we facilitate the protein production which could lead to acceleration of the drug development

    A Review on the Catalytic Acetalization of Bio-renewable Glycerol to Fuel Additives

    Get PDF
    The last 20 years have seen an unprecedented breakthrough in the biodiesel industry worldwide leads to abundance of glycerol. Therefore, the economic utilization of glycerol to various value-added chemicals is vital for the sustainability of the biodiesel industry. One of the promising processes is acetalization of glycerol to acetals and ketals for applications as fuel additives. These products could be obtained by acid-catalyzed reaction of glycerol with aldehydes and ketones. Application of different supported heterogeneous catalysts such as zeolites, heteropoly acids, metal-based and acid-exchange resins have been evaluated comprehensively in this field. In this review, the glycerol acetalization has been reported, focusing on innovative and potential technologies for sustainable production of solketal. In addition, the impacts of various parameters such as application of different reactants, reaction temperature, water removal, utilization of crude-glycerol on catalytic activity in both batch and continuous processes are discussed. The outcomes of this research will therefore significantly improve the technology required in tomorrow's bio-refineries. This review provides spectacular opportunities for us to use such renewables and will consequently benefit the industry, environment and economy

    The G2A Receptor Controls Polarization of Macrophage by Determining Their Localization Within the Inflamed Tissue

    Get PDF
    Macrophages are highly versatile cells, which acquire, depending on their microenvironment, pro- (M1-like), or antiinflammatory (M2-like) phenotypes. Here, we studied the role of the G-protein coupled receptor G2A (GPR132), in chemotactic migration and polarization of macrophages, using the zymosan-model of acute inflammation. G2A-deficient mice showed a reduced zymosan-induced thermal hyperalgesia, which was reversed after macrophage depletion. Fittingly, the number of M1-like macrophages was reduced in the inflamed tissue in G2A-deficient mice. However, G2A activation was not sufficient to promote M1-polarization in bone marrow-derived macrophages. While the number of monocyte-derived macrophages in the inflamed paw was not altered, G2A-deficient mice had less macrophages in the direct vicinity of the origin of inflammation, an area marked by the presence of zymosan, neutrophil accumulation and proinflammatory cytokines. Fittingly neutrophil efferocytosis was decreased in G2A-deficient mice and several lipids, which are released by neutrophils and promote G2A-mediated chemotaxis, were increased in the inflamed tissue. Taken together, G2A is necessary to position macrophages in the proinflammatory microenvironment surrounding the center of inflammation. In absence of G2A the macrophages are localized in an antiinflammatory microenvironment and macrophage polarization is shifted toward M2-like macrophages

    The G2A receptor controls polarization of macrophage by determining their localization within the inflamed tissue

    Get PDF
    Macrophages are highly versatile cells, which acquire, depending on their microenvironment, pro- (M1-like), or antiinflammatory (M2-like) phenotypes. Here, we studied the role of the G-protein coupled receptor G2A (GPR132), in chemotactic migration and polarization of macrophages, using the zymosan-model of acute inflammation. G2A-deficient mice showed a reduced zymosan-induced thermal hyperalgesia, which was reversed after macrophage depletion. Fittingly, the number of M1-like macrophages was reduced in the inflamed tissue in G2A-deficient mice. However, G2A activation was not sufficient to promote M1-polarization in bone marrow-derived macrophages. While the number of monocyte-derived macrophages in the inflamed paw was not altered, G2A-deficient mice had less macrophages in the direct vicinity of the origin of inflammation, an area marked by the presence of zymosan, neutrophil accumulation and proinflammatory cytokines. Fittingly neutrophil efferocytosis was decreased in G2A-deficient mice and several lipids, which are released by neutrophils and promote G2A-mediated chemotaxis, were increased in the inflamed tissue. Taken together, G2A is necessary to position macrophages in the proinflammatory microenvironment surrounding the center of inflammation. In absence of G2A the macrophages are localized in an antiinflammatory microenvironment and macrophage polarization is shifted toward M2-like macrophages
    corecore