12 research outputs found

    Cloning and Functional Assessment of the Recombinant Human Hepcidin-25 in the Baculovirus Expression System

    Get PDF
    Hepcidin is the primary regulatory hormone responsible for lowering the iron content in the blood circulation. Due to its biodegradability and low cytotoxicity, hepcidin is considered as an alternative for iron chelators. The baculovirus expression system may be suitable for human hepcidin production because the expressed proteins generally exhibit proper folding, post-translational modifications, and oligomerization. Using data from two vector maps, pFastBac1 and pFastBac HTB, a unique vector was designed encoding human hepcidin-25 as fusion recombinant peptide. Expression analysis showed that it was expressed as a peptide with a molecular weight near to 5 kDa. After purification and TEV treatment, findings revealed that recombinant human hepcidin-25 was functional and its effect was dose dependent (P=0.001). It was concluded that baculovirus expression was a suitable expression system for production of functional recombinant human hepcidin-25

    Overview of Albumin and Its Purification Methods

    No full text
    As the most frequent plasma protein, albumin constitutes more than 50% of the serum proteins in healthy individuals. It has a key role in oncotic pressure maintenance and it is known as a versatile protein carrier for transportation of various endogenous and exogenous ligands. Reduced amounts of albumin in the body will lead to different kinds of diseases such as hypovolemia and hypoproteinemia. It also has various indications in shocks, burns, cardiopulmonary bypass, acute liver failure and etc. Further applications in research consist of cell culture supplement, drug delivery carrier and protein/drug stabilizer. So, the demand for albumin increased annually worldwide. Due to different applications of albumin, many efforts have been accomplished to achieve albumin during a long period of time. In this review, an overview of serum albumin and different purification methods are summarized

    The Combined Thermoresponsive Cell-Imprinted Substrate, Induced Differentiation, and "KLC Sheet" Formation

    Full text link
    Purpose: Stem cells can exhibit restorative effects with the commitment to functional cells. Cell-imprinted topographies provide adaptable templates and certain dimensions for the differentiation and bioactivity of stem cells. Cell sheet technology using the thermo-responsive polymers detaches the "cell sheets" easier with less destructive effects on the extracellular matrix (ECM). Here, we aim to dictate keratinocyte-like differentiation of mesenchymal stem cells by using combined cell imprinting and sheet technology. Methods: We developed the poly dimethyl siloxane (PDMS) substrate having keratinocyte cell-imprinted topography grafted with the PNIPAAm polymer. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) were cultured on PDMS substrate for 14 days and keratinocyte-like differentiation monitored via the expression of involucrin, P63, and cytokeratin 14. Results: Data showed the efficiency of the current protocol in the fabrication of PDMS molds. The culture of AT-MSCs induced typical keratinocyte morphology and up-regulated the expression of cytokeratin-14, Involucrin, and P63 compared to AT-MSCs cultured on the plastic surface (p&lt;0.05). Besides, KLC sheets were generated once slight changes occur in the environment temperature. Conclusion: These data showed the hypothesis that keratinocyte cell imprinted substrate can orient AT-MSCs toward KLCs by providing a specific niche and topography.</jats:p

    A comprehensive review on methods for promotion of mechanical features and biodegradation rate in amniotic membrane scaffolds

    No full text
    AbstractAmniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother’s womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.</jats:p
    corecore