6 research outputs found

    Characterization of chromatin remodeling in mesenchymal stem cells on the application of oxidative stress

    Get PDF
    Includes bibliographical references.2022 Fall.Chromatin is a highly dynamic entity of the eukaryotic cell nucleus. Contrary to previous belief that chromatin maintains a well-defined permanent architecture in the interphase nucleus, new evidences are emerging with a support of the notion that chromatin can locally and globally rearrange itself to adapt with the cellular microenvironmental changes. Such microenvironmental changes can be related to biophysical such as change in the stiffness of extracellular matrix or the force applied on the cell as well as biochemical such as change in the oxidative stress, osmolarity or the pH. It is not well understood how the chromatin architecture changes under such environmental changes and what is the functional significance of such change. Characterization and quantification of chromatin remodeling is therefore a first step to understand the chromatin dynamics for elucidating complex subnuclear behavior under the influence of single or multiple environmental changes. Towards that end, in this work, human bone marrow derived mesenchymal stem cells were used to characterize such chromatin level changes under the changing oxidative stress on the cells. Oxidative stress was applied using hydrogen peroxide treatment. After validation of the application of oxidative stress, a series of experiments and subsequent analysis was performed to understand the hallmarks of chromatin remodeling at high spatiotemporal resolution. Specific chromatin remodeling pattern was observed in the heterochromatin, euchromatin and the interchromatin regions. Finally, a key component of chromatin remodeling complex called ARID1A was identified which is critical for the chromatin remodeling process

    A highly potent anti-VISTA antibody KVA12123 - a new immune checkpoint inhibitor and a promising therapy against poorly immunogenic tumors

    Get PDF
    BackgroundImmune checkpoint therapies have led to significant breakthroughs in cancer patient treatment in recent years. However, their efficiency is variable, and resistance to immunotherapies is common. VISTA is an immune-suppressive checkpoint inhibitor of T cell response belonging to the B7 family and a promising novel therapeutic target. VISTA is expressed in the immuno-suppressive tumor microenvironment, primarily by myeloid lineage cells, and its genetic knockout or antibody blockade restores an efficient antitumor immune response.MethodsFully human monoclonal antibodies directed against VISTA were produced after immunizing humanized Trianni mice and sorting and sequencing natively-linked B cell scFv repertoires. Anti-VISTA antibodies were evaluated for specificity, cross-reactivity, monocyte and T cell activation, Fc-effector functions, and antitumor efficacy using in vitro and in vivo models to select the KVA12123 antibody lead candidate. The pharmacokinetics and safety profiles of KVA12123 were evaluated in cynomolgus monkeys.ResultsHere, we report the development of a clinical candidate anti-VISTA monoclonal antibody, KVA12123. KVA12123 showed high affinity binding to VISTA through a unique epitope distinct from other clinical-stage anti-VISTA monoclonal antibodies. This clinical candidate demonstrated high specificity against VISTA with no cross-reactivity detected against other members of the B7 family. KVA12123 blocked VISTA binding to its binding partners. KVA12123 induced T cell activation and demonstrated NK-mediated monocyte activation. KVA12123 treatment mediated strong single-agent antitumor activity in several syngeneic tumor models and showed enhanced efficacy in combination with anti-PD-1 treatment. This clinical candidate was engineered to improve its pharmacokinetic characteristics and reduce Fc-effector functions. It was well-tolerated in preclinical toxicology studies in cynomolgus monkeys, where hematology, clinical chemistry evaluations, and clinical observations revealed no indicators of toxicity. No cytokines associated with cytokine release syndrome were elevated.ConclusionThese results establish that KVA12123 is a promising drug candidate with a distinct but complementary mechanism of action of the first generation of immune checkpoint inhibitors. This antibody is currently evaluated alone and in combination with pembrolizumab in a Phase 1/2 open-label clinical trial in patients with advanced solid tumors

    Depression is related to dietary diversity score in women: a cross-sectional study from a developing country

    No full text
    Abstract Background Substantial evidence provides support for the role of diet in the prevention and control of mental disorders. However, since there is no study regarding the relationship between dietary diversity and stress or depression, we aimed to determine the relationship between the dietary diversity score (DDS) and stress and depression in women. Methods This descriptive-analytical cross-sectional study was performed on 360 women aged 20–49 years attending health centers in the south of Tehran. The dietary intake and score of depression, anxiety, and stress were measured using a 24-h dietary recall and the 42-item depression, anxiety, stress scales questionnaire, respectively. The DDS was calculated based on the FAO 2013 guidelines. Data were analyzed using Chi-square, analysis of variance, Spearman correlation coefficient, and multivariable logistic regression tests. Results In total, 31.4 and 25.8% of the subjects suffered from depression and stress, respectively. After adjusting for confounders, a one-unit increase in DDS was associated with a 39% reduction in the risk of severe depression. The DDS was not significantly associated with mild or moderate depression, and no significant relationship was observed between the DDS and stress. Conclusions The DDS could be inversely associated with depression in women. Since we observed no significant relationship between stress and DDS, further studies are needed in this regard

    DataSheet_1_A highly potent anti-VISTA antibody KVA12123 - a new immune checkpoint inhibitor and a promising therapy against poorly immunogenic tumors.pdf

    No full text
    BackgroundImmune checkpoint therapies have led to significant breakthroughs in cancer patient treatment in recent years. However, their efficiency is variable, and resistance to immunotherapies is common. VISTA is an immune-suppressive checkpoint inhibitor of T cell response belonging to the B7 family and a promising novel therapeutic target. VISTA is expressed in the immuno-suppressive tumor microenvironment, primarily by myeloid lineage cells, and its genetic knockout or antibody blockade restores an efficient antitumor immune response.MethodsFully human monoclonal antibodies directed against VISTA were produced after immunizing humanized Trianni mice and single B cell sequencing. Anti-VISTA antibodies were evaluated for specificity, cross-reactivity, monocyte and T cell activation, Fc-effector functions, and antitumor efficacy using in vitro and in vivo models to select the KVA12123 antibody lead candidate. The pharmacokinetics and safety profiles of KVA12123 were evaluated in cynomolgus monkeys.ResultsHere, we report the development of a clinical candidate anti-VISTA monoclonal antibody, KVA12123. KVA12123 showed high affinity binding to VISTA through a unique epitope distinct from other clinical-stage anti-VISTA monoclonal antibodies. This clinical candidate demonstrated high specificity against VISTA with no cross-reactivity detected against other members of the B7 family. KVA12123 blocked VISTA binding to its binding partners. KVA12123 induced T cell activation and demonstrated NK-mediated monocyte activation. KVA12123 treatment mediated strong single-agent antitumor activity in several syngeneic tumor models and showed enhanced efficacy in combination with anti-PD-1 treatment. This clinical candidate was engineered to improve its pharmacokinetic characteristics and reduce Fc-effector functions. It was well-tolerated in preclinical toxicology studies in cynomolgus monkeys, where hematology, clinical chemistry evaluations, and clinical observations revealed no indicators of toxicity. No cytokines associated with cytokine release syndrome were elevated.ConclusionThese results establish that KVA12123 is a promising drug candidate with a distinct but complementary mechanism of action of the first generation of immune checkpoint inhibitors. This antibody is currently evaluated alone and in combination with pembrolizumab in a Phase 1/2 open-label clinical trial in patients with advanced solid tumors.</p
    corecore