108 research outputs found

    Identification of the barrier to gene flow between phylogeographic lineages of the common hamster Cricetus cricetus

    Get PDF
    In anthropogenically disturbed habitats, natural barriers still exist and have to be recognized, as they are important for conservation measures. Areas of phylogeographic breaks within a species are often stabilized in inhospitable regions which act as natural barriers. An area of contact between phylogeographic lineages of the common hamster (Cricetus cricetus) was found in the MaƂopolska Upland in Poland. A total of 142 common hamsters were captured between 2005 and 2009. All hamsters were genotyped at 17 microsatellite loci and partial sequences of the mitochondrial (mtDNA) control region were obtained. No mixed populations with mtDNA haplotypes of both lineages were found. The distance between marginal populations was about 20 km; no hamsters were found in the area between. A principal components analysis (PCA) was performed on microsatellite data and the greatest change in PC1 scores was found between marginal samples. To define the habitat components responsible for the phylogeographic break, we compared the habitat composition of sites occupied by hamsters with those from which hamsters were absent. We found that hamsters avoided forested areas and sandy soils. The area of the potential barrier was characterized by a high proportion of woodland and unfavorable soils in comparison with neighboring areas inhabited by hamsters. They cannot settle in this area due to their high winter mortality in shallow burrows and high predation in the fields adjacent to forests

    Optical microscopy in the nano-world

    Get PDF
    Scanning near-field optical microscopy (SNOM) is an optical microscopy whose resolution is not bound to the diffraction limit. It provides chemical information based upon spectral, polarization and/or fluorescence contrast images. Details as small as 20 nm can be recognized. Photophysical and photochemical effects can be studied with SNOM on a similar scale. This article reviews a good deal of the experimental and theoretical work on SNOM in Switzerland

    Computational Treatment of Metalloproteins

    Full text link
    Metalloproteins present a considerable challenge for modeling, especially when the starting point is far from thermodynamic equilibrium. Examples include formidable problems such as metalloprotein folding and structure prediction upon metal addition, removal, or even just replacement; metalloenzyme design, where stabilization of a transition state of the catalyzed reaction in the specific binding pocket around the metal needs to be achieved; docking to metal-containing sites and design of metalloenzyme inhibitors. Even more conservative computations, such as elucidations of the mechanisms and energetics of the reaction catalyzed by natural metalloenzymes, are often nontrivial. The reason is the vast span of time and length scales over which these proteins operate, and thus the resultant difficulties in estimating their energies and free energies. It is required to perform extensive sampling, properly treat the electronic structure of the bound metal or metals, and seamlessly merge the required techniques to assess energies and entropies, or their changes, for the entire system. Additionally, the machinery needs to be computationally affordable. Although a great advancement has been made over the years, including some of the seminal works resulting in the 2013 Nobel Prize in chemistry, many aforementioned exciting applications remain far from reach. We review the methodology on the forefront of the field, including several promising methods developed in our lab that bring us closer to the desired modern goals. We further highlight their performance by a few examples of applications

    Diagnosis and management of Cornelia de Lange syndrome:first international consensus statement

    Get PDF
    Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning

    InAs/InP quantum dot VECSEL emitting at 1.5 mu m

    No full text
    A high-power InAs quantum dot (QD) vertical-external-cavity surface-emitting laser emitting at 1.5 mu m is reported. The active region employs 20 layers of high-density Stranski-Krastanow InAs quantum dots on an InP substrate. The QD density and emission wavelength were independently adjusted by employing a double-cap growth sequence. Optimization of the spacer layer thickness and strain compensation rendered possible nucleation of a relatively high number of QD layers per antinode of the electromagnetic standing wave, which in turn enabled a high output power continuous wave operation of about 2.2 W. The operation wavelength could be tuned over 60 nm, taking advantage of the broadband gain characteristic of QD media. Published under license by AIP Publishing
    • 

    corecore