3 research outputs found

    Characterization Of Resonant Coupled Inductor in A Wireless Power Transfer System

    Get PDF
    A novel technology known as wireless power transfer based on coupled magnetic resonances allows for the transfer of energy in the non-radiative near-field using coupled magnetic resonances. In this study, a single-loop inductor that serves as the system's receiver and transmitter is designed, simulated, manufactured, and experimentally characterized. To make analyzing the transfer characteristics of a magnetically coupled resonator system easier, a circuit model is proposed. This structure relates the output voltage in the receiving loop to various transfer orientations and distances. Simulated and examined at a predetermined driving frequency. About 580 kHz is the system's driving resonant frequency. According to experimental findings, energy can still be transmitted under most circumstances even when the recipient is shielded. Walls, books, wooden items, organic glass panels, leather, and textiles are examples of non-metallic objects that have no effect on the flow of electrical energy. Energy transfer demonstrates that the square of the difference   between (1/r2) the transmitting and receiving resonance loops has an inverse relationship with the transfer efficiency. The transfer power and efficiency decrease as the distance between them increases. The near-field idea is portrayed in this

    Development of Smart Meter to Monitor Real Time Energy Consumption for Sustainability

    Get PDF
    This study constructed a Smart Energy Meter where energy consumption can be viewed by the consumers based on rreal time using data from smart meters. Its goals are to increase productivity, make readings more precise, and take less time to determine an individual residence's energy consumption. The device is made up of the PZEM-016 AC Energy Meter, RS-485 UART Serial Converter, NodeMCU ESP8266, Blynk IoT Application, Arduino Uno R3, and LCD Arduino Keypad Module Shield Board. The PZEM-016 is used in this smart energy meter to measure voltage, current, power, frequency, power factor, and energy consumption. Because it lacks its own display, an RS-485 was utilized to communicate with the NodeMCU and Arduino Uno. The NodeMCU sends the parameters to Blynk IoT App as long as it is connected to a fixed mobile WiFi. The Blynk will then display a real-time measurement of the parameters. The Arduino Uno is programmed to display the parameters to the LCD Keypad Module. The device was tested in an actual household. The researchers conducted 48-hour observation on the household where the energy displayed in the Blynk IoT App and the LCD display matches at approximately 9 kWh which is the same as the actual energy meter of the house that is 9kWh. The device is also tested on different appliances which resulted in the same energy consumption in both the Blynk IoT App and LCD display with the ratings of the appliances. The device was found functional
    corecore