348 research outputs found

    Identification of non-ordinary mesons from the dispersive connection between their poles and their Regge trajectories: the f0(500) resonance

    Get PDF
    We show how the Regge trajectory of a resonance can be obtained from its pole in a scattering process and analytic constraints in the complex angular momentum plane. The method is suited for resonances that dominate an elastic scattering amplitude. In particular, from the rho(770) resonance pole in pion-pion scattering, we obtain its linear Regge trajectory, characteristic of ordinary quark-antiquark states. In contrast, the f0(500) pole -the sigma meson- which dominates scalar isoscalar pion-pion scattering, yields a non-linear trajectory with a much smaller slope at the f0(500) mass. Conversely, imposing a linear Regge trajectory for the f0(500), with a slope of typical size, yields an elastic amplitude at odds with the data. This provides strong support for the non-ordinary nature of the sigma meson.Comment: 8 pages, 4 figure

    Regge trajectory of the f_0(500) resonance from a dispersive connection to its pole

    Full text link
    We report here our results on how to obtain the Regge trajectory of a resonance from its pole in a scattering process by imposing analytic constraints in the complex angular momentum plane. The method, suited for resonances that dominate an elastic scattering amplitude, has been applied to the {\rho}(770) and the f_0(500) resonances. Whereas for the former we obtain a linear Regge trajectory, characteristic of ordinary quark-antiquark states, for the latter we find a non-linear trajectory with a much smaller slope at the resonance mass. This provides a strong indication of the non-ordinary nature of the sigma meson.Comment: 4 pages, 2 figures, to appear in the proceedings of the "Seventh International Symposium on Chiral Symmetry in Hadrons and Nuclei

    Urethritis caused by Neisseria meningitidis serogroup C

    Get PDF

    Enhanced non-quark-antiquark and non-glueball Nc behavior of light scalar mesons

    Get PDF
    We show that the latest and very precise dispersive data analyses require a large and very unnat- ural fine-tuning of the 1/Nc expansion at Nc = 3 if the f_0(600) and K(800) light scalar mesons are to be considered predominantly quark-antiquark states, which is not needed for light vector mesons. For this, we use scattering observables whose 1/Nc corrections are suppressed further than one power of 1/Nc for quark-antiquark or glueball states, thus enhancing contributions of other nature. This is achieved without using unitarized ChPT, but if it is used we can also show that it is not just that the coefficients of the 1/Nc expansion are unnatural, but that the expansion itself does not even follow the expected 1/Nc scaling of a glueball or a quark-antiquark meson.Comment: Discussion disfavoring a glueball interpretation added. Version published in Phys. Rev.

    Dispersive calculation of complex Regge trajectories for the lightest f_2 resonances and the K^∗(892)

    Get PDF
    We apply a recently developed dispersive formalism to calculate the Regge trajectories of the f_2(1270), f´_ 2(1525) and K^∗(892) mesons. Trajectories are calculated, not fitted to a family of resonances. Assuming that these resonances can be treated in the elastic approximation, the only input are the pole position and residue of a resonance. In all three cases, the predicted Regge trajectories are almost real and linear, with slopes in agreement with the universal value of order 1 GeV_(−2). We also show how these results barely change when considering more than two subtractions in the dispersive formalism

    Changes in the free-energy landscape of p38α MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations

    Get PDF
    p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data

    Determination of SU(2) Chiral Perturbation Theory low energy constants from a precise description of pion-pion scattering threshold parameters

    Get PDF
    We determine the values of the one- and two-loop low energy constants appearing in the SU(2) Chiral Perturbation Theory calculation of pion-pion scattering. For this we use a recent and precise sum rule determination of some scattering lengths and slopes that appear in the effective range expansion. In addition we provide sum rules for these coefficients up to third order in the expansion. Our results when using only the scattering lengths and slopes of the S, P, D and F waves are consistent with previous determinations, but seem to require higher order contributions if they are to accommodate the third order coefficients of the effective range expansion.Comment: 16 pages. Version published in Phys. Rev. D. Enlarged discussions in several sections, appendices and many references added. Results and conclusions unchange
    • …
    corecore