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We show how the Regge trajectory of a resonance can be obtained from its pole in a scattering process
and analytic constraints in the complex angular momentum plane. The method is suited for resonances
that dominate an elastic scattering amplitude. In particular, from the ρ(770) resonance pole in ππ
scattering, we obtain its linear Regge trajectory, characteristic of ordinary quark–antiquark states. In
contrast, the f0(500) pole—the sigma meson—which dominates scalar isoscalar ππ scattering, yields a
nonlinear trajectory with a much smaller slope at the f0(500) mass. Conversely, imposing a linear Regge
trajectory for the f0(500), with a slope of typical size, yields an elastic amplitude at odds with the data.
This provides strong support for the non-ordinary nature of the sigma meson.

© 2013 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

There is growing evidence for the existence of hadrons that fall
beyond the ordinary quark–antiquark classification of mesons or
three quark classification of baryons.

Most current investigations of dynamical models underlying
resonance formation focus on individual partial waves. This al-
lows to study poles of amplitudes in the complex energy plane
at fixed angular momentum and their spectroscopic classification
into SU(3) multiplets, which by itself provides limited information
about their composition. In this work we take advantage of the
analytical properties of amplitudes in the complex angular mo-
mentum plane and this enables us to investigate the dynamical
linkage of resonances of different spins. The function connecting
such resonances is known as the Regge trajectory and its form
can be used to discriminate between the underlying (QCD) mecha-
nisms responsible for generating the resonances. For example, lin-
ear ( J , M2) trajectories relating the angular momentum J and the
mass squared are naively and intuitively interpreted in terms of
the rotation of the flux tube connecting a quark and an antiquark.
Strong deviations from this linear behavior would suggest a rather
different nature.
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SCOAP3.
For illustration, we will apply our method to light resonances
in elastic ππ scattering. We consider the ρ(770), which suits
well the ordinary meson picture, and also the f0(500) or σ me-
son, whose nature, spectroscopic classification, and even its exis-
tence have been the subject of a longstanding debate. Apart from
its significant role in our understanding of the spontaneous chi-
ral symmetry breaking of QCD, the nucleon–nucleon attraction, or
even the identification of the lightest glueball, our interest in the
f0(500) is that different approaches [1,2] suggest that it may not
be an ordinary quark–antiquark meson. Furthermore, the σ meson
is often omitted from ( J , M2) trajectory fits [3], since it does not
“fit well into this classification” or, as in [4], because it has a large
width and it contributes little to the χ2, but was included in the
n-trajectories.

The input for our approach is just the position and residue
of the resonance poles in ππ scattering. Our f0(500) choice is
then even more pertinent, because for long its pole parameters
have been plagued by systematic uncertainties. However, recent
and rigorous dispersive analyses on scattering data have provided
a model-independent and accurate determination of the f0(500)

[5,6], finally settling [7] the controversy on its existence.
Even though we shall not be able to compute trajectories over a

large energy range, the local behavior can be quite telling. In prac-
tice we aim at obtaining the slope and the intercept of the Regge
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trajectory where the f0(500) lies, showing the striking differences
with the ρ(770), thus explaining why it does not fit into the ordi-
nary linear trajectory classification.

This work focuses on properties of Regge poles of the scattering
amplitude. In this context, our working definition of an ordinary
meson is that it corresponds to a pole which lies on a Regge tra-
jectory that is almost real and linear with slope of the order of
1 GeV−2. We show that the Regge trajectory of the ρ(770) satisfies
this criterion, while that of the f0(500) does not. Since trajecto-
ries of ordinary mesons are qualitatively understood in terms of
conventional quark–antiquark dynamics, the fact that the f0(500)

trajectory is different suggests that a different mechanism is re-
sponsible for the formation of the f0(500), although at present we
cannot specify what that mechanism might be.

2. Regge trajectory from a single pole

Let us recall that within analytic S-matrix theory, the method
of imposing unitarity constraints from the crossed channels on the
direct channel is that of analytic continuation of partial waves into
the complex angular momentum plane. Singularities in the angu-
lar momentum plane, e.g. Regge poles, interpolate between direct
and crossed-channel dynamics, containing the most complete de-
scription of resonance parameters.

2.1. Analytic constraints on the trajectory and the residue

An elastic ππ partial wave near a Regge pole reads

tl(s) = β(s)/
(
l − α(s)

) + f (l, s), (1)

where f (l, s) is a regular function of l, whereas the Regge trajec-
tory α(s) and residue β(s) satisfy α(s∗) = α∗(s), β(s∗) = β∗(s), in
the complex-s plane cut along the real axis for s > 4m2

π . Note that
the pole appears in the second Riemann sheet of tl(s), which we
normalize as

tl(s) = eiδl(s) sin δl(s)/ρ(s), ρ(s) =
√

1 − 4m2
π/s (2)

with δl(s) being the phase shift. Now, if the pole dominates
in Eq. (1), the unitarity condition above threshold Im tl(s) =
ρ(s)|tl(s)|2 analytically continued to complex l implies that, for
real l,

Imα(s) = ρ(s)β(s). (3)

For integer-l partial waves the unitarity relation gives the prescrip-
tion for how to analytically continue tl(s) below the elastic cut
for s > 4m2

π . Similarly, Eq. (3) determines the continuation of α(s),
which we will use when studying resonance poles that occur at
fixed, integer l and complex s.

Note that, if β(s) was known, we could use a dispersion re-
lation to determine α(s). Therefore we first discuss the analytic
properties of the former [8]. Near threshold, partial waves behave
as tl(s) ∝ q2l , where q2 = s/4 − m2

π and thus, β(s) ∝ q2α(s) . More-
over, since the Regge pole contribution to the full amplitude is
proportional to (2α + 1)Pα(zs), where zs is the s-channel scat-
tering angle, in order to cancel poles of the Legendre function
Pα(zs) ∝ Γ (α + 1/2) the residue has to vanish when α + 3/2 is
a negative integer, i.e.,

β(s) = γ (s)ŝα(s)/Γ
(
α(s) + 3/2

)
, (4)

where ŝ = (s − 4m2
π )/s0. The dimensional scale s0 = 1 GeV2 is in-

troduced for convenience and the reduced residue γ (s) is, once
again, a real analytic function. Since on the real axis β(s) is real,
the phase of γ is

argγ (s) = − Imα(s) log(ŝ) + arg Γ
(
α(s) + 3/2

)
. (5)

Analyticity therefore demands that

γ (s) = P (s)exp

(
c0 + c′s + s

π

∞∫
4m2

π

ds′ argγ (s′)
s′(s′ − s)

)
, (6)

where P (s) is an entire function. Given that we use the elastic ap-
proximation, the behavior at large s cannot be determined from
first principles. However as we expect linear Regge trajectories to
emerge for the ρ(770), we should allow α to behave as a first or-
der polynomial at large-s. This implies that Imα(s) decreases with
growing s and thus α(s) obeys the dispersion relation [9],

α(s) = α0 + α′s + s

π

∞∫
4m2

π

ds′ Imα(s′)
s′(s′ − s)

. (7)

To match the asymptotic behavior of β(s) and Imα(s) (assum-
ing α′ �= 0), it follows from the unitarity equation, Eq. (3), that
c′ = α′(log(α′s0) − 1) and that P (s) can at most be a constant.
Hence, together with Eq. (1), the following three equations define
the “constrained Regge-pole” amplitude [8]:

Reα(s) = α0 + α′s + s

π
PV

∞∫
4m2

π

ds′ Imα(s′)
s′(s′ − s)

, (8)

Imα(s) = ρ(s)b0 ŝα0+α′s

|Γ (α(s) + 3
2 )| exp

(
−α′s

[
1 − log

(
α′s0

)] + s

π
PV

×
∞∫

4m2
π

ds′ Imα(s′) log ŝ
ŝ′ + arg Γ (α(s′) + 3

2 )

s′(s′ − s)

)
, (9)

β(s) = b0 ŝα0+α′s

Γ (α(s) + 3
2 )

exp

(
−α′s

[
1 − log

(
α′s0

)]

+ s

π

∞∫
4m2

π

ds′ Imα(s′) log ŝ
ŝ′ + argΓ (α(s′) + 3

2 )

s′(s′ − s)

)
, (10)

where PV denotes “principal value”. Note that Eqs. (9) and (10)
reduce to Eq. (3) for real s.

For the σ -meson, β(s) at low energies should also include the
Adler-zero required by chiral symmetry. In practice it is enough to
place it at the leading order chiral perturbation theory result [12],
i.e., β(s) ∝ 2s −m2

π . This should be done without spoiling the large
s-behavior, which can be achieved by replacing Γ (α + 3/2) by
Γ (α + 5/2). Such modification leaves the pole at α(s) = −3/2 un-
canceled. This is not an issue since for the σ trajectory, α(s) =
ασ (s) this pole will be located far outside the range of applicabil-
ity of our approach. Hence, for the f0(500) we should just multiply
the right hand side of Eq. (9) by 2s − m2

π and replace the 3/2 by
5/2 inside the gamma functions. Note that b0 now is not dimen-
sionless.

2.2. Numerical analysis

We solve the equations for α(s) and β(s) numerically. The
only inputs are the pole positions sM and residues |gM | for the
M = ρ(770) and the f0(500) resonances. Specifically, the poles are
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Fig. 1. Partial waves tlI (I being the isospin) with the l = 1 wave shown in the left and l = 0 in the right panels, respectively. Solid lines represent the amplitudes from [10].
The resonance poles of these amplitudes [6] determine the constrained Regge-pole amplitudes shown with dashed curves. The estimated systematic uncertainties are shown
as gray bands (almost indistinguishable from the dashed line in the case of t11). In the right panels, the dotted lines represent the constrained Regge-pole amplitude for the
S-wave if the σ -pole is fitted by imposing a linear trajectory with α′ � 1 GeV−2.
used as input for determining the α0, α′ , b0 parameters of the cor-
responding Regge trajectories, by requiring that at the pole, on the
second Riemann sheet, βM(s)/(l − αM(s)) → |g2

M |/(s − sM), with
l = 0,1 for M = σ ,ρ . We minimize the sum of the squared dif-
ferences between the input and output values for the real and
imaginary parts of the pole position and for the absolute value of
the squared coupling, divided by the corresponding squared uncer-
tainties. The pole parameters are taken from a precise dispersive
representation of ππ scattering data [6,10] that enables a model
independent, analytic continuation of partial wave amplitudes to
the complex energy plane.

For a given set of α0, α′ and b0 parameters we solve the sys-
tem of Eqs. (8) and (9), with the modification due to the Adler-zero
in the scalar case, as discussed above. This is done by setting
Imα(s) = 0 initially, which yields Reα(s) using Eq. (8). Then, these
real and imaginary parts of α are used in Eq. (9) to obtain Imα(s).
This process is iterated until the results converge. Thus, we obtain
a constrained Regge-pole amplitude, under the approximation that
it is dominated by a single Regge trajectory. This amplitude, deter-
mined by a pole at a given complex s and real l, can be extended
to any value in the complex s-plane. In particular we can com-
pare this Regge amplitude on the real axis with the partial waves
of [10]. The two amplitudes do not have to overlap on the real axis
since they are only constrained to agree at the resonance pole.

The left panels of Fig. 1 show the real and imaginary parts of
the P wave. The solid curves give the Constrained Data Fits of
[10] whose ρ(770) pole position,

√
sρ = 763.7+1.7

−1.5 − i73.2+1.0
−1.1 MeV

and residue, |gρ | = 6.01+0.04
−0.07 [6] were used as input. As discussed

above, these are then fit with Eq. (1) for l = 1, where α(s) and
β(s) satisfy the coupled Eqs. (8) and (9). The output values for
the fitted pole are:

√
sρ = 762.7 − i73.5 MeV and |gρ | = 5.99. The
resulting real and imaginary parts of this Regge-pole amplitude on
the real axis are shown as dashed lines in the left column of Fig. 1.
The gray bands cover the uncertainties due to the errors in the de-
termination of the pole positions and residues from the dispersive
analysis of data in [10]. In the resonant region there is fair agree-
ment between our resulting amplitude and that from [10]. The ρ
peak is clearly identified in the imaginary part, and, as expected,
the agreement deteriorates as we approach threshold or the inelas-
tic region, where the pole is less dominant.

The right panels of Fig. 1 display the S wave from [10] (solid
curves), with a pole [6] at

√
sσ = 457+14

−13 − i279+11
−7 MeV and

residue |gσ | = 3.59+0.11
−0.13 GeV. Dashed lines correspond to the

Regge-pole partial wave, whose pole is at
√

sσ = 461 − i281 MeV
and |gσ | = 3.51 GeV. It is well known that the f0(500) does not
conform to a Breit–Wigner shape but still dominates the partial
wave from threshold up to almost 1 GeV, where it strongly inter-
feres with the very narrow f0(980). We find a remarkably good
agreement between our input and output amplitudes from thresh-
old up to 0.5 GeV2, where the agreement starts to deteriorate.

Since our constrained Regge amplitudes provide a fair repre-
sentation of the resonance region, we show in Fig. 2 the resulting
Regge trajectories. We see that the imaginary part of αρ(s) is much
smaller than the real part. In addition, the latter grows linearly
with s, with intercept αρ(0) = 0.520 ± 0.002. Note that the error
band we provide is only due to the uncertainty in the input pole
parameters from Ref. [6].

This value for the intercept is consistent with that obtained
from the extensive study [3] of ( J , M2) resonance trajectories.
It can also be compared with αρ(0) = 0.52 ± 0.02 from fits to
total cross sections for N N , π N and ππ [11], or to the value
of αρ(0) = 1 − η2 = 0.450 ± 0.005 [7], which includes an even
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Fig. 2. Real and imaginary parts of the resonance Regge trajectory obtained from the resonance pole parameters as explained in the text. The ρ(770) trajectory shown in the
left panel is almost real and linearly rising. In the right panel, we observe that real and imaginary parts of the f0(500) trajectory are comparable with the former having a
much smaller slope than that of the ρ .
larger number of channels. Moreover, the resulting slope α′
ρ =

0.902 ± 0.004 GeV−2 is consistent with fits of a linear trajec-
tory to the ρ(770), ρ3(1690) and ρ5(2350) mesons performed
in [3] and more recently in [4] that yield α′

ρ � 0.83 GeV−2 and

α′
ρ � 0.87 ± 0.06 GeV−2, respectively. A value of α′

ρ = 0.9 GeV−2

was used in [11].
Taking into account our approximations, and that our error

bands only reflect the uncertainty in the input pole parameters,
our results are in remarkable agreement with trajectories from the
literature and provide a benchmark of the validity of our approach.

Regarding the f0(500) trajectory shown in the right panel of
Fig. 2, we see that it is evidently nonlinear. We obtain

ασ (0) = −0.090+0.004
−0.012, α′

σ � 0.002+0.050
−0.001 GeV−2,

where, once again, the error bands are due to the uncertainty in
the input pole parameters from [6]. The slope is about two orders
of magnitude smaller than that of the ρ (and other trajectories
typical to quark–antiquark resonances, e.g. a2, f2, π2). This pro-
vides strong support for a non-ordinary nature of the σ meson.
Furthermore the growth of ασ (s) is so slow that it excludes the
possibility that any of the known isoscalar resonances f2, f4, . . .

lie on the σ meson trajectory. Our result therefore explains why
the f0(500) does not fit well in the usual hadron classification into
linear trajectories with a slope of typical hadronic size.

To show the difference between the ρ(770) and f0(500) tra-
jectories, in the left panel of Fig. 3 we plot both the real and
imaginary parts of the two trajectories using the same scale. Not
only is the difference clearly evident between the shape and mag-
nitude of the real part of the ρ(770) trajectory and that of the
f0(500), but also the fact that the real and imaginary parts of the
f0(500) trajectory are comparable.
Furthermore, in Fig. 3 we show the striking similarities between
the f0(500) trajectory and those of Yukawa potentials in non-
relativistic scattering, not only at low energies below s = 2 GeV2,
represented by the thick continuous line, but also when extrapo-
lated beyond that energy, which we show as a thick dashed–dotted
line that describes a backward loop in the complex plane before
moving to infinity. Of course, our results are most reliable at low
energies and the extrapolation should be interpreted cautiously.
Nevertheless, our results suggest that the f0(500) looks more like
a low-energy resonance of a short range potential, e.g. between pi-
ons, than a bound state of a long range confining force between a
quark and an antiquark.

Concerning the uncertainties in the input parameters [6], we
observe that from threshold energies up to s = 2 GeV2, i.e., the
gray band around the thick continuous line, all trajectories bear
a close similarity to Regge trajectories of Yukawa potentials as it
happens for the central curve. Of course, when extrapolating our
results to higher energies, the uncertainty band becomes larger.
Most of the trajectories we find within the uncertainties still de-
scribe a loop in the (Reα, Imα) plane, but a few of them describe
a trajectory where the loop has collapsed (these are represented
by a somewhat darker gray band). For the latter the α′s term
is somewhat stronger and it prevents formation of a loop. Below
s = 2 GeV2, all trajectories follow a qualitative behavior similar to
that of a Yukawa potential and even when extrapolated to higher
energies they do not follow an ordinary almost-real linear Regge
trajectory with a slope of order 1 GeV−2.

One could also wonder if the weak f0(500) trajectory is af-
fected by other uncertainties, hidden in the neglected background
amplitude (cf. Eq. (1)). If we try to fit the pole in [10] by fix-
ing α′ to a more natural value, say the one for the ρ(770), we
obtain a χ2 which is two orders of magnitude larger, with the
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Fig. 3. (Left) αρ(s) and ασ (s) Regge trajectories, from our constrained Regge-pole amplitudes. The ρ trajectory is almost real and linear, whereas both the real and imaginary
parts of ασ (s) are very small, and not evidently linear. For the error bands we use the same convention as in Fig. 1. In most cases the bands are so thin that they are
barely distinguishable from the central lines. (Right) ασ (s) and αρ(s) in the complex plane. Beyond s = 2 GeV2 extrapolations of our results are plotted as dotted lines.
Asymptotically, i.e., s > 200 GeV2, the small real part, proportional to α′s takes over the dispersive contribution and Reασ (s) starts growing, similar to Reαρ(s). Within the
input pole parameter error bands, in the case of the σ , we find two types of solutions for the trajectory. One set has a loop in the Imα– Reα plane. The other, having slightly
higher α′ does not form a loop. The pattern-filled band encloses the first type of solutions, whereas the gray lines correspond to the other set. At low and intermediate
energies, both are similar to the trajectories of the Yukawa potential V (r) = −Ga exp(−r/a)/r, shown here for three different values of G [13]. For the G = 2 Yukawa curve
to reach the value of Imα = 0.23 at s = 2 GeV2, as our curve does, we can estimate a � 0.5 GeV−1, following [13]. This could be compared, for instance, to the S-wave ππ
scattering length � 1.6 GeV−1.
pole at
√

sσ = 487 − i199 MeV and a much larger coupling |gσ | =
4.09 GeV. Even worse, as seen by the dotted curve in the right
panel of Fig. 1, on the real axis the real and imaginary parts of
the resulting Regge-pole amplitude are qualitatively different from
the expected behavior for the S-wave. We note that this exercise is
also highly relevant because it illustrates that the large resonance
width is not responsible for the fact that the f0(500) does not fol-
low an ordinary Regge trajectory.

Finally we show the results obtained for the f0(500) trajec-
tory when using the unmodified dispersion relation of Eq. (9) in-
stead of the one in which the Adler zero has been fixed. In this
case the pole position and coupling can be reproduced fairly well:√

sσ = 476 − i280 MeV, |gσ | = 3.20 GeV (although with a χ2 still
20 times larger than that of the fit with the modified dispersion
relation). However, the corresponding amplitude on the real en-
ergy axis turns out to be completely different from that of the
dispersive analysis, and consequently does not agree with the ex-
perimental data. This is apparent in the left panel of Fig. 4. In
addition, in the right panel of Fig. 4 we show the real and imag-
inary parts of its Regge trajectory. The results are quite similar to
the case when we do not factor out the Adler zero. Actually, both
are once again completely flat compared to the real part of the ρ
trajectory (to ease the comparison, the same scale as that of Fig. 3
has been used for the real part). The parameters of this trajectory
are: α0 = −0.002 and α′ = 0.015 GeV−2, once again very differ-
ent from the corresponding values for ordinary meson trajectories.
It seems that the Adler zero is quite important to obtain a reason-
able description of data, but is not responsible for the non-ordinary
behavior of the f0(500), which seems to be mainly determined by
values of the pole parameters, i.e., the mass, width and residue.

3. Summary and discussion

To summarize, we have shown how to obtain the Regge tra-
jectory of a light resonance from its associated pole, when that
dominates the elastic scattering of two hadrons. The method is
based on general analytic properties and yields a set of integral
relations for the Regge trajectory and its residue. These are solved
iteratively while fitting just the pole position and coupling of the
given resonance. The method works fairly well for the ρ(770),
which dominates elastic ππ vector–isovector scattering. The re-
sulting trajectory is almost real and nearly linear. Given our ap-
proximations, the intercept and slope come remarkably close to
values in the literature, obtained from fits to high energy scatter-
ing or to linear trajectories including the ρ(770), ρ3(1690) and
ρ5(2350). Our method thus identifies the ρ(770) and its trajectory
partners as ordinary mesons. It is worth noting that, since higher
resonances are not included in the input, our method “predicts”
such a tower of resonances, from just the pole and residue of the
ρ(770). Note that the method does not build in a nearly real and
linear behavior.

The main objective of this Letter, however, was to estimate the
Regge trajectory and residue of the σ or f0(500) scalar meson,
whose pole position has been accurately determined by several
groups using model independent dispersive techniques. Our esti-
mate is relevant because the σ has been long considered a non-
ordinary meson and is often excluded from linear Regge fits with
slopes of typical hadronic size, � 1 GeV−2.

For the scalar case our method is modified to include the Adler
zero required by chiral symmetry. We fit the pole and coupling
obtained from dispersive studies of ππ scattering and obtain the
Regge residue and trajectories. The resulting trajectory is more
than one order of magnitude weaker than that of the ρ or any
ordinary trajectory, and at low energies bears striking similarities
with the trajectories of Yukawa potentials. The resulting scale of
tens of MeV or at most hundreds, for the slope, is more typi-
cal of meson physics than of quark–antiquark interactions. The σ
Regge trajectory is so flat that any trajectory partners would have
to be extremely massive. To test the robustness of this observa-
tion we have checked that our results are very stable within the
uncertainties of the pole parameters that we used as input. In ad-
dition we have tried to impose a typical size linear trajectory on
the σ , but that deteriorates the fit to the σ pole and particu-
larly to the coupling, so the resulting amplitude in the physical
region is qualitatively very different from the observations. There-
fore, the smallness of our estimate of the σ trajectory is robust
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Fig. 4. Left panel: Dashed lines represent real (top) and imaginary (bottom) parts of the dispersive data analysis in [10] which provide the ρ and f0(500) poles [6]. These
poles have been fitted here with the coupled dispersion relations of Eqs. (8) and (9), in which the Adler zero has not been imposed. The resulting real and imaginary parts
of this Regge-pole amplitude are shown as black lines. Although the pole parameters are acceptably fitted, the amplitude in the real axis does not agree at all with that of
the dispersive data analysis. Right panel: real (top) and imaginary (bottom) parts of the corresponding Regge trajectory.
and explains why it does not fit well in the usual Regge classifi-
cation and strongly supports a non-ordinary nature of the lightest
scalar meson.

Our method can be applicable to other resonances that dom-
inate elastic scattering and generalization to inelastic channels is
also straightforward. Hence we plan on studying the K ∗(892) vec-
tor and the K (800) (or κ ) scalar resonance, and possibly other
meson–nucleon resonances. Furthermore we also plan on studying
the Nc or quark mass dependence of the Regge trajectories and to
explore hadronic resonance models that could explain this non-
ordinary behavior (e.g., tetraquarks, hadron molecules, etc.). We
expect that this method should provide further understanding of
the most controversial states in the hadron spectrum.
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