624 research outputs found

    ZIP8 Zinc Transporter: Indispensable Role for Both Multiple-Organ Organogenesis and Hematopoiesis In Utero

    Get PDF
    Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn2+/(HCO3–)2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects–proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis

    Functional Evaluation of Genetic and Environmental Regulators of P450 mRNA Levels

    Get PDF
    Variations in the activities of Cytochrome P450s are one of the major factors responsible for inter-individual differences in drug clearance rates, which may cause serious toxicity or inefficacy of therapeutic drugs. Various mRNA level is one of the key factors for different activity of the major P450 genes. Although both genetic and environmental regulators of P450 gene expression have been widely investigated, few studies have evaluated the functional importance of cis- and trans-regulatory factors and environmental factors in the modulation of inter-individual expression variations of the P450 genes. In this study, we measured the mRNA levels of seven major P450 genes (CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5) in 96 liver biopsy samples from Chinese population. Both trans-acting (mRNA levels and non-synonymous SNPs of putative regulator genes) and cis-acting (gene copy number and functional SNPs) factors were investigated to identify the determinants of the expression variations of these seven P450 genes. We found that expression variations of most P450 genes, regulator genes and housekeeping genes were positively correlated at the mRNA level. After partial correlation analysis using ACTB and GAPDH expression to eliminate the effect of global regulators, a UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree was constructed to reveal the effects of specific regulation networks potentially masked by global regulators. Combined with the functional analysis of regulators, our results suggested that expression variation at the mRNA level was mediated by several factors in a gene-specific manner. Cis-acting genetic variants might play key roles in the expression variation of CYP2D6 and CYP3A5, environmental inducers might play key roles in CYP1A1 and CYP1A2 variation and global regulators might play key roles in CYP2C9 variation. In addition, the functions of regulators that play less important roles in controlling expression variation for each P450 gene were determined

    Analysis of benzo[a]pyrene metabolites formed by rat hepatic microsomes using high pressure liquid chromatography: optimization of the method

    Get PDF
    A simple and sensitive method was developed to separate the carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), and six of its oxidation metabolites generated by rat hepatic microsomes enriched with cytochrome P450 (CYP) 1A1, by high pressure liquid chromatography (HPLC). The HPLC method, using an acetonitrile/water gradient as mobile phase and UV detection, provided appropriate separation and detection of both mono- and di-hydroxylated metabolites of BaP as well as BaP diones formed by rat hepatic microsomes and the parental BaP. In this enzymatic system, 3-hydroxy BaP, 9-hydroxy BaP, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-9,10-dihydrodiol and BaP-dione were generated. Among them the mono-hydroxylated BaP metabolite, 3-hydroxy BaP followed by di-hydroxylated BaP products, BaP-7,8-dihydrodiol and BaP-9,10-dihydrodiol, predominated, while BaP-dione was a minor metabolite. This HPLC method will be useful for further defining the roles of the CYP1A1 enzyme with both in vitro and in vivo models in understanding its real role in activation and detoxification of BaP

    Variation of Basal EROD Activities in Ten Passerine Bird Species – Relationships with Diet and Migration Status

    Get PDF
    Inter-specific differences in animal defence mechanisms against toxic substances are currently poorly understood. The ethoxyresorufin-O-deethylase (EROD) enzyme plays an important role in defence against toxic chemicals in a wide variety of animals, and it is an important biomarker for environmental contamination. We compared basal hepatic EROD activity levels among ten passerine species to see if there is inter-specific variation in enzyme activity, especially in relation to their diet and migration status. Migratory insectivores showed higher EROD activity compared to granivores. We hypothesize that the variable invertebrate diet of migratory insectivores contains a wider range of natural toxins than the narrower diet of granivores. This may have affected the evolution of mixed function oxidases (MFO) system and enzyme activities. We further tested whether metabolic rates or relative liver size were associated with the variation in detoxification capacity. We found no association between EROD activity and relative (per mass unit) basal metabolic rate (BMR). Instead, EROD activity and relative liver mass (% of body mass) correlated positively, suggesting that a proportionally large liver also functions efficiently. Our results suggest that granivores and non-migratory birds may be more vulnerable to environmental contaminants than insectivores and migratory birds. The diet and migration status, however, are phylogenetically strongly connected to each other, and their roles cannot be fully separated in our analysis with only ten passerine species
    • …
    corecore