4 research outputs found

    A Methodological Framework for AI-Assisted Security Assessments of Active Directory Environments

    No full text
    The pervasiveness of complex technological infrastructures and services coupled with the continuously evolving threat landscape poses new sophisticated security risks. These risks are mostly associated with many diverse vulnerabilities related to software or hardware security flaws, misconfigurations and operational weaknesses. In this scenario, a timely assessment and mitigation of the security risks affecting technological environments are of paramount importance. To cope with these compelling issues, we propose an AI-assisted methodological framework aimed at evaluating whether the target environment is vulnerable or safe. The framework is based on the combined application of graph-based and machine learning techniques. More precisely, the components of the target together with their vulnerabilities are represented by graphs whose analysis identifies the attack paths associated with potential security threats. Machine learning techniques classify these paths and provide the security assessment of the target. The experimental evaluation of the proposed framework was performed on 220 artificially generated Active Directory environments, half of which injected with vulnerabilities. The results of the classification process were generally good. For example, the F1-score obtained by the Random Forest classifier for the assessment of vulnerable networks was equal to 0.91. These results suggest that our approach could be applied for automating the security assessment procedures of complex networked environments

    Security of IoT application layer protocols: Challenges and findings

    No full text
    IoT technologies are becoming pervasive in public and private sectors and represent presently an integral part of our daily life. The advantages offered by these technologies are frequently coupled with serious security issues that are often not properly overseen or even ignored. The IoT threat landscape is extremely wide and complex and involves a wide variety of hardware and software technologies. In this framework, the security of application layer protocols is of paramount importance since these protocols are at the basis of the communications among applications and services running on different IoT devices and on cloud/edge infrastructures. This paper offers a comprehensive survey of application layer protocol security by presenting the main challenges and findings. More specifically, the paper focuses on the most popular protocols devised in IoT environments for messaging/data sharing and for service discovery. The main threats of these protocols as well as the Common Vulnerabilities and Exposures (CVE) for their products and services are analyzed and discussed in detail. Good practices and measures that can be adopted to mitigate threats and attacks are also investigated. Our findings indicate that ensuring security at the application layer is very challenging. IoT devices are exposed to numerous security risks due to lack of appropriate security services in the protocols as well as to vulnerabilities or incorrect configuration of the products and services being deployed. Moreover, the constrained capabilities of these devices affect the types of security services that can be implemented

    A methodological approach for time series analysis and forecasting of web dynamics

    No full text
    The web is a complex information ecosystem that provides a large variety of content changing over time as a consequence of the combined effects of management policies, user interactions and external events. These highly dynamic scenarios challenge technologies dealing with discovery, management and retrieval of web content. In this paper, we address the problem of modeling and predicting web dynamics in the framework of time series analysis and forecasting. We present a general methodological approach that allows the identification of the patterns describing the behavior of the time series, the formulation of suitable models and the use of these models for predicting the future behavior. Moreover, to improve the forecasts, we propose a method for detecting and modeling the spiky patterns that might be present in a time series. To test our methodological approach, we analyze the temporal patterns of page uploads of the Reuters news agency website over one year. We discover that the upload process is characterized by a diurnal behavior and by a much larger number of uploads during weekdays with respect to weekend days. Moreover, we identify several sudden spikes and a daily periodicity. The overall model of the upload process \u2013 obtained as a superposition of the models of its individual components \u2013 accurately fits the data, including most of the spikes
    corecore