28 research outputs found

    Metabolomics approach for examining synbiotic protection against infectious enteric pathogens, A

    Get PDF
    2019 Summer.Includes bibliographical references.Infectious gastrointestinal diseases contribute to billions of global cases of human illness annually. Salmonella enterica serovar Typhimurium and human rotavirus represent two human health challenges, where escalating multidrug resistance and poor vaccine efficacy warrant the development of alternative treatments. Health-promoting probiotic microorganisms are becoming increasingly studied for their production of bioactive small molecules that confer protective effects against enteric pathogens. Among probiotics, Lactobacilli, Bifidobacteria and E. coli Nissle form synbiotics with rice bran, the prebiotic-rich outer coating of brown rice, to enhance animal protection against S. Typhimurium infection and human rotavirus diarrhea compared to probiotics or rice bran alone. Despite these beneficial interactions of probiotics and rice bran, a knowledge gap exists in our understanding of the synbiotic small molecules driving these protective effects, especially across probiotic species differences in small molecule production. To test our overarching hypothesis that probiotic species would metabolize rice bran into distinct suites of small molecules that suppressed pathogen function, we first applied the cell-free supernatant from L. paracasei, L. fermentum, and L. rhamnosus cultured with rice bran to S. Typhimurium and observed magnitude-dependent growth suppression across synbiotics. Both L. paracasei and L. fermentum supernatants exhibited enhanced growth suppression compared to their probiotic-only treatments and contained differentially abundant antimicrobial lipids, amino acids, and nucleotides that have not been previously characterized for antimicrobial functions. The cell-free supernatant of the L. paracasei and L. fermentum synbiotics were fractionated and applied to S. Typhimurium to identify the small molecules driving their enhanced Salmonella growth suppression. Metabolite profiles were also compared across synbiotics. Each synbiotic produced several bioactive fractions that suppressed Salmonella growth. While both L. fermentum and L. paracasei bioactive fractions contained abundant lipids, L. fermentum fractions were selectively-enriched in the energy metabolite fumarate and L. paracasei fractions were uniquely-enriched with amino acids (imidazole lactate, ornithine) suggesting that Lactobacillus spp. probiotics could differentially metabolize rice bran to drive Salmonella growth suppression with different suites of small molecules. To examine probiotic metabolism of rice bran in mammalian systems, we compared the intestinal and blood metabolomes of healthy adult mice and gnotobiotic, neonatal pigs that were fed combinations of probiotics and rice bran to the metabolomes of animals consuming rice bran or probiotics alone. In mice, a notable difference following 15 weeks consumption of B. longum fermented was that the arginine metabolite N-delta-acetylornithine was significantly increased in B. longum fermented rice bran compared to rice bran alone and was elevated in both the colon tissue and blood of mice consuming fermented rice bran compared to rice bran alone. In gnotobiotic neonatal pigs, three weeks of prophylactic supplementation with E. coli Nissle and L. rhamnosus GG and rice bran were more effective at reducing human rotavirus diarrhea compared to pigs given these probiotics or rice bran alone. Approximately 300 colon and blood metabolites that were differentially-abundant between synbiotic-consuming pigs versus pigs consuming probiotics alone were identified, over 50% of which were lipids and amino acids. Similar modulations lipid and amino acid metabolites (sphingolipids, diacylglycerols, arginine metabolites) were identified in the colon tissue and blood of mice and pigs consuming the synbiotic treatments. Consequently, the association of these metabolite profiles with human rotavirus diarrhea protection, when combined with their presence in two mammalian models, provides strong rationale for these infectious enteric disease protective roles harbored by these metabolites. The results of these studies provide a role for synbiotics in the prevention of infectious gastrointestinal diseases. For the first time, high-throughput metabolomics analyses were applied to identify differential bioactive metabolite production by Lactobacillus spp. + rice bran synbiotics that suppressed S. Typhimurium growth, as well as to compare bioactive metabolites produced by B. longum, L. rhamnosus GG, and E. coli Nissle in mice and pigs that were protective against human rotavirus diarrhea. The contributions of amino acids and lipids to the enhanced capacities of these synbiotics compared to probiotics or rice bran alone can be studied further for their mechanisms of action on pathogens. Ultimately, these bioactive synbiotic metabolites can guide the optimization and development of broad-spectrum antimicrobials and other prophylactic agents that protect against infectious enteric diseases across the human and animal lifespan

    Untargeted metabolomic profiling of serum from client-owned cats with early and late-stage chronic kidney disease

    No full text
    Abstract Evaluation of the metabolome could discover novel biomarkers of disease. To date, characterization of the serum metabolome of client-owned cats with chronic kidney disease (CKD), which shares numerous pathophysiological similarities to human CKD, has not been reported. CKD is a leading cause of feline morbidity and mortality, which can be lessened with early detection and appropriate treatment. Consequently, there is an urgent need for early-CKD biomarkers. The goal of this cross-sectional, prospective study was to characterize the global, non-targeted serum metabolome of cats with early versus late-stage CKD compared to healthy cats. Analysis revealed distinct separation of the serum metabolome between healthy cats, early-stage and late-stage CKD. Differentially abundant lipid and amino acid metabolites were the primary contributors to these differences and included metabolites central to the metabolism of fatty acids, essential amino acids and uremic toxins. Correlation of multiple lipid and amino acid metabolites with clinical metadata important to CKD monitoring and patient treatment (e.g. creatinine, muscle condition score) further illustrates the relevance of exploring these metabolite classes further for their capacity to serve as biomarkers of early CKD detection in both feline and human populations

    Rice Bran and Probiotics Alter the Porcine Large Intestine and Serum Metabolomes for Protection against Human Rotavirus Diarrhea

    No full text
    Human rotavirus (HRV) is a leading cause of severe childhood diarrhea, and there is limited vaccine efficacy in the developing world. Neonatal gnotobiotic pigs consuming a prophylactic synbiotic combination of probiotics and rice bran (Pro+RB) did not exhibit HRV diarrhea after challenge. Multiple immune, gut barrier protective, and anti-diarrheal mechanisms contributed to the prophylactic efficacy of Pro+RB when compared to probiotics (Pro) alone. In order to understand the molecular signature associated with diarrheal protection by Pro+RB, a global non-targeted metabolomics approach was applied to investigate the large intestinal contents and serum of neonatal gnotobiotic pigs. The ultra-high performance liquid chromatography-tandem mass spectrometry platform revealed significantly different metabolites (293 in LIC and 84 in serum) in the pigs fed Pro+RB compared to Pro, and many of these metabolites were lipids and amino acid/peptides. Lipid metabolites included 2-oleoylglycerol (increased 293.40-fold in LIC of Pro+RB, p = 3.04E-10), which can modulate gastric emptying, andhyodeoxycholate (decreased 0.054-fold in the LIC of Pro+RB, p = 0.0040) that can increase colonic mucus production to improve intestinal barrier function. Amino acid metabolites included cysteine (decreased 0.40-fold in LIC, p = 0.033, and 0.62-fold in serum, p = 0.014 of Pro+RB), which has been found to reduce inflammation, lower oxidative stress and modulate mucosal immunity, and histamine (decreased 0.18-fold in LIC, p = 0.00030, of Pro+RB and 1.57-fold in serum, p = 0.043), which modulates local and systemic inflammatory responses as well as influences the enteric nervous system. Alterations to entire LIC and serum metabolic pathways further contributed to the anti-diarrheal and anti-viral activities of Pro+RB such as sphingolipid, mono/diacylglycerol, fatty acid, secondary bile acid, and polyamine metabolism. Sphingolipid and long chain fatty acid profiles influenced the ability of HRV to both infect and replicate within cells, suggesting that Pro+RB created a protective lipid profile that interferes with HRV activity. Polyamines act on enterocyte calcium-sensing receptors to modulate intracellular calcium levels, and may directly interfere with rotavirus replication. These results support that multiple host and probiotic metabolic networks, notably those involving lipid and amino acid/peptide metabolism, are important mechanisms through which Pro+RB protected against HRV diarrhea in neonatal gnotobiotic pigs

    Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties

    No full text
    Abstract Background Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. Results This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography–mass spectrometry (GC–MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. Conclusion Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this metabolite network may occur via additive and synergistic effects between compounds in the food matrix

    Human colon function ex vivo: Dependence on oxygen and sensitivity to antibiotic.

    No full text
    BackgroundHuman intestines contain a heterogeneous collection of cells that include immune, neural and epithelial elements interacting in a highly complex physiology that is challenging to maintain ex vivo. There is an extreme oxygen gradient across the intestinal wall due in part to microbiota in the lumen and close to the gut wall, which complicates the design of tissue culture systems. The current study established the use of an organotypic slice model of human intestinal tissue derived from colonoscopy biopsies to study host-microbial interactions after antibiotic treatment, and the influence of oxygen concentration on gut wall function.MethodsOrganotypic slices from human colon biopsies collected during routine colonoscopy provided three-dimensional environments that maintained cellular morphology ex vivo. Biopsy slices were used to study impacts of oxygen concentrations and antibiotic treatments on epithelial proliferation rates, and metabolites from tissue culture supernatants.ResultsImmune function was validated via demonstration of a T lymphocyte response to Salmonella enterica serovar Typhimurium. Following 24 h of Salmonella exposure there was a significant increase in CD3+ T-lymphocytes in biopsy slices. Metabolite profiling of tissue culture supernatants validated the influence of antibiotic treatment under varied oxygen culture conditions on both host and microbiome-mediated metabolism. Epithelial health was influenced by oxygen and antibiotic. Increased epithelial proliferation was measured in lowered oxygen conditions (1% = 5.9 mmHg) compared to atmospheric conditions standard at 5000 feet above sea level in Colorado (~17% = 100 mmHg). Antibiotic treatment reduced epithelial proliferation only in 5.9 mmHg oxygen cultured slices.ConclusionsA human colon organotypic slice model was established for applications ranging from gut epithelial proliferation to enteric pathogen influence on mucosal immune functions ex vivo. The results further support the need to account for oxygen concentration in primary tissue cultures, and that antibiotic use impacts gut-microbe-immune interactions

    The Nutrient and Metabolite Profile of 3 Complementary Legume Foods with Potential to Improve Gut Health in Rural Malawian Children

    No full text
    BACKGROUND: Environmental enteric dysfunction (EED), frequently seen in rural Malawian children, causes chronic inflammation and increases the risk of stunting. Legumes may be beneficial for improving nutrition and reducing the risk of developing EED in weaning children. OBJECTIVE: The objectives of this study were to determine the nutritional value, verify the food safety, and identify metabolite profiles of 3 legume-based complementary foods: common bean (CB), cowpea (CP), and traditional corn-soy blend (CSB). METHODS: Foods were prepared by using local ingredients and analyzed for nutrient composition with the use of Association of Official Analytical Chemists (AOAC) standards (950.46, 991.43, 992.15, 996.06, and 991.36) for macro- and micronutrient proximate analysis. Food safety analysis was conducted in accordance with the Environmental Protection Agency (7471B) and AOAC (2008.02) standards. The metabolite composition of foods was determined with nontargeted ultra-performance LC–tandem mass spectrometry metabolomics. RESULTS: All foods provided similar energy; CB and CP foods contained higher protein and dietary fiber contents than did the CSB food. Iron and zinc were highest in the CSB and CP foods, whereas CB and CP foods contained higher amounts of magnesium, phosphorus, and potassium. A total of 652 distinct metabolites were identified across the 3 foods, and 23, 14, and 36 metabolites were specific to the CSB, CB, and CP foods, respectively. Among the potential dietary biomarkers of intake to distinguish legume foods were pipecolic acid and oleanolic acid for CB; arabinose and serotonin for CSB; and quercetin and α- and γ-tocopherol acid for CP. No heavy metals were detected, and aflatoxin was measured only in the CSB (5.2 parts per billion). CONCLUSIONS: Legumes in the diet provide a rich source of protein, dietary fiber, essential micronutrients, and phytochemicals that may reduce EED. These food metabolite analyses identified potential dietary biomarkers of legume intake for stool, urine, and blood detection that can be used in future studies to assess the relation between the distinct legumes consumed and health outcomes. This trial was registered at clinicaltrials.gov as NCT02472262 and NCT02472301

    Data_Sheet_4_1_Metabolite profiling and bioactivity guided fractionation of Lactobacillaceae and rice bran postbiotics for antimicrobial-resistant Salmonella Typhimurium growth suppression.xlsx

    No full text
    Probiotic-fermented supplements (postbiotics) are becoming increasingly explored for their activity against antibiotic-resistant enteropathogens. Prebiotics are often incorporated into postbiotics to enhance their efficacy, but due to strain differences in probiotic activity, postbiotic antimicrobial effects are poorly understood. To improve postbiotic antimicrobial efficacy, we investigated and compared metabolite profiles of postbiotics prepared with three lactic acid bacteria strains (L. fermentum, L. paracasei, and L. rhamnosus) cultured with and without rice bran, a globally abundant, rich source of prebiotics. At their minimum inhibitory dose, L. fermentum and L. paracasei postbiotics + rice bran suppressed S. Typhimurium growth 42–55% more versus their respective probiotic-alone postbiotics. The global, non-targeted metabolome of these postbiotics identified 109 metabolites increased in L. fermentum and L. paracasei rice bran postbiotics, including 49 amino acids, 20 lipids, and 12 phytochemicals metabolites. To identify key metabolite contributors to postbiotic antimicrobial activity, bioactivity-guided fractionation was applied to L. fermentum and L. paracasei rice bran-fermented postbiotics. Fractionation resulted in four L. fermentum and seven L. paracasei fractions capable of suppressing S. Typhimurium growth more effectively versus the negative control. These fractions were enriched in 15 metabolites that were significantly increased in the global metabolome of postbiotics prepared with rice bran versus postbiotic alone. These metabolites included imidazole propionate (enriched in L. fermentum + rice bran, 1.61-fold increase; L. paracasei + rice bran 1.28-fold increase), dihydroferulate (L. fermentum + rice bran, 5.18-fold increase), and linoleate (L. fermentum + rice bran, 1.82-fold increase; L. paracasei + rice bran, 3.19-fold increase), suggesting that they may be key metabolite drivers of S. Typhimurium growth suppression. Here, we show distinct mechanisms by which postbiotics prepared with lactic acid bacteria and rice bran produce metabolites with antimicrobial activity capable of suppressing S. Typhimurium growth. Probiotic strain differences contributing to postbiotic antimicrobial activity attract attention as adjunctive treatments against pathogens.</p

    Data_Sheet_5_1_Metabolite profiling and bioactivity guided fractionation of Lactobacillaceae and rice bran postbiotics for antimicrobial-resistant Salmonella Typhimurium growth suppression.docx

    No full text
    Probiotic-fermented supplements (postbiotics) are becoming increasingly explored for their activity against antibiotic-resistant enteropathogens. Prebiotics are often incorporated into postbiotics to enhance their efficacy, but due to strain differences in probiotic activity, postbiotic antimicrobial effects are poorly understood. To improve postbiotic antimicrobial efficacy, we investigated and compared metabolite profiles of postbiotics prepared with three lactic acid bacteria strains (L. fermentum, L. paracasei, and L. rhamnosus) cultured with and without rice bran, a globally abundant, rich source of prebiotics. At their minimum inhibitory dose, L. fermentum and L. paracasei postbiotics + rice bran suppressed S. Typhimurium growth 42–55% more versus their respective probiotic-alone postbiotics. The global, non-targeted metabolome of these postbiotics identified 109 metabolites increased in L. fermentum and L. paracasei rice bran postbiotics, including 49 amino acids, 20 lipids, and 12 phytochemicals metabolites. To identify key metabolite contributors to postbiotic antimicrobial activity, bioactivity-guided fractionation was applied to L. fermentum and L. paracasei rice bran-fermented postbiotics. Fractionation resulted in four L. fermentum and seven L. paracasei fractions capable of suppressing S. Typhimurium growth more effectively versus the negative control. These fractions were enriched in 15 metabolites that were significantly increased in the global metabolome of postbiotics prepared with rice bran versus postbiotic alone. These metabolites included imidazole propionate (enriched in L. fermentum + rice bran, 1.61-fold increase; L. paracasei + rice bran 1.28-fold increase), dihydroferulate (L. fermentum + rice bran, 5.18-fold increase), and linoleate (L. fermentum + rice bran, 1.82-fold increase; L. paracasei + rice bran, 3.19-fold increase), suggesting that they may be key metabolite drivers of S. Typhimurium growth suppression. Here, we show distinct mechanisms by which postbiotics prepared with lactic acid bacteria and rice bran produce metabolites with antimicrobial activity capable of suppressing S. Typhimurium growth. Probiotic strain differences contributing to postbiotic antimicrobial activity attract attention as adjunctive treatments against pathogens.</p

    Table_6_Metabolite profiling and bioactivity guided fractionation of Lactobacillaceae and rice bran postbiotics for antimicrobial-resistant Salmonella Typhimurium growth suppression.XLSX

    No full text
    Probiotic-fermented supplements (postbiotics) are becoming increasingly explored for their activity against antibiotic-resistant enteropathogens. Prebiotics are often incorporated into postbiotics to enhance their efficacy, but due to strain differences in probiotic activity, postbiotic antimicrobial effects are poorly understood. To improve postbiotic antimicrobial efficacy, we investigated and compared metabolite profiles of postbiotics prepared with three lactic acid bacteria strains (L. fermentum, L. paracasei, and L. rhamnosus) cultured with and without rice bran, a globally abundant, rich source of prebiotics. At their minimum inhibitory dose, L. fermentum and L. paracasei postbiotics + rice bran suppressed S. Typhimurium growth 42–55% more versus their respective probiotic-alone postbiotics. The global, non-targeted metabolome of these postbiotics identified 109 metabolites increased in L. fermentum and L. paracasei rice bran postbiotics, including 49 amino acids, 20 lipids, and 12 phytochemicals metabolites. To identify key metabolite contributors to postbiotic antimicrobial activity, bioactivity-guided fractionation was applied to L. fermentum and L. paracasei rice bran-fermented postbiotics. Fractionation resulted in four L. fermentum and seven L. paracasei fractions capable of suppressing S. Typhimurium growth more effectively versus the negative control. These fractions were enriched in 15 metabolites that were significantly increased in the global metabolome of postbiotics prepared with rice bran versus postbiotic alone. These metabolites included imidazole propionate (enriched in L. fermentum + rice bran, 1.61-fold increase; L. paracasei + rice bran 1.28-fold increase), dihydroferulate (L. fermentum + rice bran, 5.18-fold increase), and linoleate (L. fermentum + rice bran, 1.82-fold increase; L. paracasei + rice bran, 3.19-fold increase), suggesting that they may be key metabolite drivers of S. Typhimurium growth suppression. Here, we show distinct mechanisms by which postbiotics prepared with lactic acid bacteria and rice bran produce metabolites with antimicrobial activity capable of suppressing S. Typhimurium growth. Probiotic strain differences contributing to postbiotic antimicrobial activity attract attention as adjunctive treatments against pathogens.</p

    Data_Sheet_1_1_Metabolite profiling and bioactivity guided fractionation of Lactobacillaceae and rice bran postbiotics for antimicrobial-resistant Salmonella Typhimurium growth suppression.docx

    No full text
    Probiotic-fermented supplements (postbiotics) are becoming increasingly explored for their activity against antibiotic-resistant enteropathogens. Prebiotics are often incorporated into postbiotics to enhance their efficacy, but due to strain differences in probiotic activity, postbiotic antimicrobial effects are poorly understood. To improve postbiotic antimicrobial efficacy, we investigated and compared metabolite profiles of postbiotics prepared with three lactic acid bacteria strains (L. fermentum, L. paracasei, and L. rhamnosus) cultured with and without rice bran, a globally abundant, rich source of prebiotics. At their minimum inhibitory dose, L. fermentum and L. paracasei postbiotics + rice bran suppressed S. Typhimurium growth 42–55% more versus their respective probiotic-alone postbiotics. The global, non-targeted metabolome of these postbiotics identified 109 metabolites increased in L. fermentum and L. paracasei rice bran postbiotics, including 49 amino acids, 20 lipids, and 12 phytochemicals metabolites. To identify key metabolite contributors to postbiotic antimicrobial activity, bioactivity-guided fractionation was applied to L. fermentum and L. paracasei rice bran-fermented postbiotics. Fractionation resulted in four L. fermentum and seven L. paracasei fractions capable of suppressing S. Typhimurium growth more effectively versus the negative control. These fractions were enriched in 15 metabolites that were significantly increased in the global metabolome of postbiotics prepared with rice bran versus postbiotic alone. These metabolites included imidazole propionate (enriched in L. fermentum + rice bran, 1.61-fold increase; L. paracasei + rice bran 1.28-fold increase), dihydroferulate (L. fermentum + rice bran, 5.18-fold increase), and linoleate (L. fermentum + rice bran, 1.82-fold increase; L. paracasei + rice bran, 3.19-fold increase), suggesting that they may be key metabolite drivers of S. Typhimurium growth suppression. Here, we show distinct mechanisms by which postbiotics prepared with lactic acid bacteria and rice bran produce metabolites with antimicrobial activity capable of suppressing S. Typhimurium growth. Probiotic strain differences contributing to postbiotic antimicrobial activity attract attention as adjunctive treatments against pathogens.</p
    corecore