24 research outputs found

    A cluster randomized controlled trial for child and parent weight management: children and parents randomized to the intervention group have correlated changes in adiposity

    Get PDF
    Abstract Background Studies have suggested that obesity is linked within families and that successful interventions involve both the parent and child with obesity. However little information exists regarding similarities in adiposity and weight loss between the parent and child, especially in low socio-economic ethnically diverse households. Methods The purpose of this study was to examine the relationships between the changes from baseline over time in adiposity, weight, health behaviors, and self-efficacy in children (n = 184) and parents (n = 184) participating in an 18-month weight loss program. Within the intervention group only and for each post-baseline time point, Pearson correlation coefficients were computed for children’s changes (from baseline) in adiposity, weight, health behaviors, and self-efficacy, with their parents’ corresponding changes from baseline, to determine how strongly the dyads were correlated. Results At the completion of 18 months, the intervention group parents demonstrated strong positive correlations between parent and child change in waist circumference (r = 0.409, p < 0.001), triceps (r = 0.332, p < 0.001), and subscapular (r = 0.292, p = 0.002) skinfolds. There were no significant correlations between weight, health behaviors, eating, and exercise self-efficacy. Conclusions The results suggest that in the Southern United States low-income parents and their children with obesity are strongly correlated. Trial registration NCT01378806 Retrospectively Registered on June 22, 2011

    Correction to: A cluster randomized controlled trial for child and parent weight management: children and parents randomized to the intervention group have correlated changes in adiposity

    Get PDF
    Erratum After publication of the original article [1] that the surname of author Reuben Adatorwovor was incorrectly typeset as Adatorwover. These errors were introduced during typesetting; thus the publisher apologizes for this error. Additionally, the original manuscript has also been updated to amend this error

    Relationships of physical activity and sedentary time in obese parent-child dyads: a cross-sectional study

    Get PDF
    Abstract Background Research suggests physical activity is linked to obesity. Further, the physical activity of healthy parents and their children is associated with each other. However, this relationship has not been examined in obese parents and their obese children. Methods The purpose of this study was to compare the physical activity and sedentary time of obese, low-income, ethnic minority parents and their children on weekdays and weekend days using accelerometry. Data were obtained from eight rural sites in the middle and eastern part of North Carolina (N.C.), United States (U.S.) from 2007-2010 using a rolling enrollment. One hundred and ninety-nine obese parents (94 % female) and their obese children (54 % female) wore accelerometers simultaneously for three weekdays and one weekend day. Total physical activity, moderate-to-vigorous physical activity (MVPA) and sedentary time and proportions were determined. Results Parents’ and children’s total physical activity and MVPA levels were lower on weekend days than weekdays. Total counts per minute for children on weekdays and weekend days were greater than for parents (p  0.13). Discussion Since physical activity levels of obese parents and their obese child are somewhat related, especially on weekend days, combined parent-child obesity programs focused on reducing sedentary time could be beneficial, particularly for the child. Conclusion In conclusion, this study of the physical activity levels of obese parents and their obese children found some relationships between the parents’ and children’s physical activity and sedentary behavior patterns, especially on weekend days. Trial registration NCT01378806

    Rationale, design, and methodology for the optimizing outcomes in women with gestational diabetes mellitus and their infants study

    Get PDF
    Background Women who are diagnosed with gestational diabetes mellitus (GDM) are at increased risk for developing prediabetes and type 2 diabetes mellitus (T2DM). To date, there have been few interdisciplinary interventions that target predominantly ethnic minority low-income women diagnosed with GDM. This paper describes the rationale, design and methodology of a 2-year, randomized, controlled study being conducted in North Carolina. Methods/Design Using a two-group, repeated measures, experimental design, we will test a 14- week intensive intervention on the benefits of breastfeeding, understanding gestational diabetes and risk of progression to prediabetes and T2DM, nutrition and exercise education, coping skills training, physical activity (Phase I), educational and motivational text messaging and 3 months of continued monthly contact (Phase II). A total of 100 African American, non-Hispanic white, and bilingual Hispanic women between 22–36 weeks of pregnancy who are diagnosed with GDM and their infants will be randomized to either the experimental group or the wait-listed control group. The first aim of the study is to determine the feasibility of the intervention. The second aim of study is to test the effects of the intervention on maternal outcomes from baseline (22–36 weeks pregnant) to 10 months postpartum. Primary maternal outcomes will include fasting blood glucose and weight (BMI) from baseline to 10 months postpartum. Secondary maternal outcomes will include clinical, adiposity, health behaviors and self-efficacy outcomes from baseline to 10 months postpartum. The third aim of the study is to quantify the effects of the intervention on infant feeding and growth. Infant outcomes will include weight status and breastfeeding from birth through 10 months of age. Data analysis will include general linear mixed-effects models. Safety endpoints include adverse event reporting. Discussion Findings from this trial may lead to an effective intervention to assist women diagnosed with GDM to improve maternal glucose homeostasis and weight as well as stabilize infant growth trajectory, reducing the burden of metabolic disease across two generations. Trial registration NCT0180943

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore