10 research outputs found

    A Review on Composite Liposomal Technologies for Specialized Drug Delivery

    Get PDF
    The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications

    A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications

    Get PDF
    Electrospinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nanotechnology that sparked worldwide research interest in nanomaterials for their preparation and application in biomedicine and drug delivery. Electrospinning is a simple, adaptable, cost-effective, and versatile technique for producing nanofibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nanofibers. The nanofiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nanofiber fabrication by electrospinning has broadened the horizons for widespread application of nanofibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electrospun nanofibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of postsurgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electrospun nanofibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nanofibers when applied to drug delivery

    Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Get PDF
    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments

    Investigation of the Physicochemical and Physicomechanical Properties of a Novel Intravaginal Bioadhesive Polymeric Device in the Pig Model

    No full text
    The purpose of this study was to develop and evaluate the bioadhesivity, in vitro drug release, and permeation of an intravaginal bioadhesive polymeric device (IBPD) loaded with 3′-azido-3′-deoxythymidine (AZT) and polystyrene sulfonate (PSS). Modified polyamide 6,10, poly(lactic-coglycolic acid), polyacrylic acid, polyvinyl alcohol, and ethylcellulose were blended with model drugs AZT and PSS as well as radio-opaque barium sulfate (BaSO4) and then compressed into caplet devices on a tableting press. One set of devices was coated with 2% w/v pentaerythritol polyacrylic acid (APE-PAA) while another remained uncoated. Thermal analysis was performed on the constituent polymers as well the IBPD. The changes in micro-environmental pH within the simulated human vaginal fluid due to the presence of the IBPD were assessed over a period of 30 days. Textural profile analysis indicated that the bioadhesivity of the APE-PAA-coated devices (3.699 ± 0.464 N; 0.0098 ± 0.0004 J) was higher than that of the uncoated devices (1.198 ± 0.150 N; 0.0019 ± 0.0001 J). In addition, BaSO4-facilitated X-ray imaging revealed that the IBPD adhered to pig vaginal tissue over the experimental period of 30 days. Controlled drug release kinetics was obtained over 72 days. During a 24-h permeation study, an increase in drug flux for both AZT (0.84 mg cm−2 h−1) and PSS (0.72 mg cm−2 h−1) was realized up to 12 h and thereafter a steady-state was achieved. The diffusion and dissolution dynamics were mechanistically deduced based on a chemometric and molecular structure modeling approach. Overall, results suggested that the IBPD may be sufficiently bioadhesive with desirable physicochemical and physicomechanical stability for use as a prolonged intravaginal drug delivery device

    A Review of Multi-Responsive Membranous Systems for Rate-Modulated Drug Delivery

    No full text
    Membrane technology is broadly applied in the medical field. The ability of membranous systems to effectively control the movement of chemical entities is pivotal to their significant potential for use in both drug delivery and surgical/medical applications. An alteration in the physical properties of a polymer in response to a change in environmental conditions is a behavior that can be utilized to prepare ‘smart’ drug delivery systems. Stimuli-responsive or ‘smart’ polymers are polymers that upon exposure to small changes in the environment undergo rapid changes in their microstructure. A stimulus, such as a change in pH or temperature, thus serves as a trigger for the release of drug from membranous drug delivery systems that are formulated from stimuli-responsive polymers. This article has sought to review the use of stimuli-responsive polymers that have found application in membranous drug delivery systems. Polymers responsive to pH and temperature have been extensively addressed in this review since they are considered the most important stimuli that may be exploited for use in drug delivery, and biomedical applications such as in tissue engineering. In addition, dual-responsive and glucose-responsive membranes have been also addressed as membranes responsive to diverse stimuli

    A Review of Current Intravaginal Drug Delivery Approaches Employed for the Prophylaxis of HIV/AIDS and Prevention of Sexually Transmitted Infections

    No full text
    corecore