29 research outputs found

    Mannose-6-Phosphate/Insulin-Like Growth Factor 2 Receptor (M6P/IGF2-R) in Growth and Disease: A Review

    Get PDF
    This work aims to summarize the current knowledge about Mannose-6- Phosphate/Insulin-like Growth Factor 2 Receptor (M6P/IGF2-R) in the regulation of growth and development, and its involvement in tumor progression. M6P/IGF2-R binds both molecules sharing M6P signals and IGF2. The studies showed that M6P/IGF2-R is involved in the trafficking of mannnose-6-phosphorylated enzymes from the Trans-Golgi Network (TGN) to lysosomes and the uptake of secreted proenzymes from the plasma membrane to the lysosomes via clathrin-coated vesicles for their maturation. The M6P/IGF2-R acts as a scavenger that binds IGF2 and transports it to lysosomes for its degradation since IGF2 exerts its biological effects on cell proliferation and development by binding with lower affinity on IGF1 receptor, which is structurally similar to insulin receptor and different from the M6P/IGF2-R. The M6P/IGF2-R has also been studied in human cancer, and frequent losses of heterozygosity (LOH) at the 6q25-27 gene region with mutations in the remaining allele have been described. These results led to consider M6P/IGF2-R gene as a putative tumor suppressor and its potential prognostic value has been suggested

    Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication

    Get PDF
    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (Δ). This anti-Δ PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates

    Genetic immunization of ducks for production of antibodies specific to Helicobacter pylori UreB in egg yolks

    Get PDF
    Following genetic immunization of laying ducks with a plasmid expressing Helicobacter pylori UreB (large subunit of urease), IgY against UreB were obtained from egg yolks. These polyclonal and monospecific IgY antibodies are of higher-titer and specifically recognize recombinant H. pylori urease purified from Escherichia coli. To our knowledge this is the first report describing generation of IgY antibodies directed against antigens of H. pylori by DNA-based immunization

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B

    No full text
    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers, such as chitosan (CS), appear of particular interest as nonviral vectors due to their capacity to facilitate cellular delivery of bioactive cargoes including peptide nucleic acids (PNAs) or DNA vaccines. We have investigated the ability of a PNA conjugated to different CPPs to inhibit the replication of duck hepatitis B virus (DHBV), a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip) alone, in the absence of its PNA cargo, was able to drastically inhibit late stages of DHBV replication. In the mouse model, conjugation of HBV DNA vaccine to modified CS (Man-CS-Phe) improved cellular and humoral responses to plasmid-encoded antigen. Moreover, other systems for gene delivery were investigated including CPP-modified CS and cationic nanoparticles. The results showed that these nonviral vectors considerably increased plasmid DNA uptake and expression. Collectively promising results obtained in preclinical studies suggest the usefulness of these safe delivery systems for the development of novel therapeutics against chronic hepatitis B

    Cell Penetrating Peptides Used in Delivery of Therapeutic Oligonucleotides Targeting Hepatitis B Virus

    No full text
    Peptide Nucleic Acid (PNAs) and small noncoding RNAs including small interfering RNAs (siRNAs) represent a new class of oligonucleotides considered as an alternative therapeutic strategy in the chronic hepatitis B treatment. Indeed, chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide, despite the availability of an effective prophylactic vaccine. Current therapeutic approaches approved for chronic HBV treatment are pegylated-interferon alpha (IFN)-α and nucleos(t)ide analogues (NAs). Both therapies do not completely eradicate viral infection and promote severe side effects. In this context, the development of new effective treatments is imperative. This review focuses on antiviral activity of both PNAs and siRNAs targeting hepatitis B virus. Thus, we briefly present our results on the ability of PNAs to decrease hepadnaviral replication in duck hepatitis B virus (DHBV) model. Interestingly, other oligonucleotides as siRNAs could significantly inhibit HBV antigen expression in transient replicative cell culture. Because the application of these oligonucleotides as new antiviral drugs has been hampered by their poor intracellular bioavailability, we also discuss the benefits of their coupling to different molecules such as the cell penetrating peptides (CPPs), which were used as vehicles to deliver therapeutic agents into the cells

    Développement de nouvelles stratégies antisens à base de PNAs (Peptide Nucleic Acide) pour le traitement des hépatites B chroniques

    No full text
    Les insuffisances des traitements actuels des infections Ă  Virus de l HĂ©patite B (VHB), orientent la recherche vers le dĂ©veloppement de nouvelles stratĂ©gies antivirales. Ainsi, nous avons Ă©tudiĂ© Ă  l aide du modĂšle du VHB du canard, la capacitĂ© des PNAs (Peptide Nucleic Acids), une nouvelle classe de molĂ©cules antisens, Ă  inhiber la rĂ©plication virale. Nous avons amĂ©liorĂ© la pĂ©nĂ©tration intracellulaire des PNAs par leur couplage Ă  des peptides permĂ©abilisants (CPPs) et optimisĂ© leur voie d administration. Nous montrons que la voie intraveineuse est plus efficace que la voie intrapĂ©ritonĂ©ale. Aussi, nous dĂ©montrons pour la premiĂšre fois que le PNA anti-epsilon couplĂ© aux CPPs est capable d inhiber la rĂ©plication virale in vitro et in vivo. Cependant, la spĂ©cificitĂ© de cette inhibition peut ĂȘtre affectĂ©e par l activitĂ© antivirale de certains CPPs. Ces molĂ©cules pourraient reprĂ©senter ainsi de nouveaux agents potentiellement intĂ©ressants pour les traitements des hĂ©patites B chroniquesGiving the partial efficacy of nucleoside analogues, novel approaches against chronic hepatitis B virus (HBV) infection need to be developed. Thus, Peptide Nucleic Acid (PNAs), a novel generation of antisense agents, appears of particular value for HBV therapy. We have evaluated the capacity of the PNA to inhibit viral replication in vitro and in vivo in DHBV-infected duck model. Because the major problem of their therapeutic application is their poor intracellular penetration, we have used the PNA coupled to cell penetrating peptide (CPP). First, we have optimized the administration route and show that intravenous route led to a better liver delivery of PNA that intraperitoneal route. We provided here the first evidence that CPP-PNA conjugate and CPPs themselves inhibit viral replication suggesting their usefulness for HBV therapy. Our results also demonstrate that the choice of CPPs used as a vehicle for delivery plays an important role in the specificity and inhibition of viral replicationLYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Developments in Cell-Penetrating Peptides as Antiviral Agents and as Vehicles for Delivery of Peptide Nucleic Acid Targeting Hepadnaviral Replication Pathway

    No full text
    Alternative therapeutic approaches against chronic hepatitis B virus (HBV) infection need to be urgently developed because current therapies are only virostatic. In this context, cell penetration peptides (CPPs) and their Peptide Nucleic Acids (PNAs) cargoes appear as a promising novel class of biologically active compounds. In this review we summarize different in vitro and in vivo studies, exploring the potential of CPPs as vehicles for intracellular delivery of PNAs targeting hepadnaviral replication. Thus, studies conducted in the duck HBV (DHBV) infection model showed that conjugation of (D-Arg)8 CPP to PNA targeting viral epsilon (ε) were able to efficiently inhibit viral replication in vivo following intravenous administration to ducklings. Unexpectedly, some CPPs, (D-Arg)8 and Decanoyl-(D-Arg)8, alone displayed potent antiviral effect, altering late stages of DHBV and HBV morphogenesis. Such antiviral effects of CPPs may affect the sequence-specificity of CPP-PNA conjugates. By contrast, PNA conjugated to (D-Lys)4 inhibited hepadnaviral replication without compromising sequence specificity. Interestingly, Lactose-modified CPP mediated the delivery of anti-HBV PNA to human hepatoma cells HepaRG, thus improving its antiviral activity. In light of these promising data, we believe that future studies will open new perspectives for translation of CPPs and CPP-PNA based technology to therapy of chronic hepatitis B

    Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B

    No full text
    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers, such as chitosan (CS), appear of particular interest as nonviral vectors due to their capacity to facilitate cellular delivery of bioactive cargoes including peptide nucleic acids (PNAs) or DNA vaccines. We have investigated the ability of a PNA conjugated to different CPPs to inhibit the replication of duck hepatitis B virus (DHBV), a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip) alone, in the absence of its PNA cargo, was able to drastically inhibit late stages of DHBV replication. In the mouse model, conjugation of HBV DNA vaccine to modified CS (Man-CS-Phe) improved cellular and humoral responses to plasmid-encoded antigen. Moreover, other systems for gene delivery were investigated including CPP-modified CS and cationic nanoparticles. The results showed that these nonviral vectors considerably increased plasmid DNA uptake and expression. Collectively promising results obtained in preclinical studies suggest the usefulness of these safe delivery systems for the development of novel therapeutics against chronic hepatitis B

    Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication

    No full text
    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (Δ). This anti-Δ PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates
    corecore