2 research outputs found

    A case study on the health risks related to flood disasters in South Africa

    No full text
    Floods occurred in the Ndlambe Local Municipality in South Africa in October 2012. During various stages of the post-disaster recovery, bacterial concentrations were measured in water and soil samples from the flood zone. All drinking water concentrations of E. coli were below 1–3 colony forming units per 100 millilitres (CFUs/100 mL). The flood waters contained between 46500 to more than 100000 CFUs/100 mL of E. coli. {The concentrations of Salmonella spp. in the flood waters varied from 5000 to 250000 CFUs/100 mL. The presumptive Vibrio spp. concentrations in flood waters ranged from 1000 to over 150000 CFUs/100 mL. {The soil concentrations for E. coli ranged from 1 to above 330 colony-forming units per 1 g of soil dry weight (CFUs/g). The soil concentrations of Salmonella spp. varied from below 1 to 22 CFUs/g. The estimated airborne fungal concentrations ranged from 16820 to 28540 colony-forming units per 1 cubic meter. An outbreak of an infectious disease was recorded among the volunteers who assisted with the post-disaster recovery. The likely bacterial causative agents included strains of Aeromonas spp. and Vibrio cholerae. Any human contact with either the contaminated flood waters or of flooded dwellings should only occur, if the individuals in questions are equipped with the full-body personal protective gear. Non-governmental stakeholders performed majority of the post-disaster recovery operations, as the local government could only cover 11% of the required costs. Applying sanitation funds to disaster recovery and increased use of the low-cost flood defence products in high risk areas could provide a solution for the future
    corecore