42 research outputs found

    Beta Cell Replacement Therapy

    Get PDF

    Emergence of a broad repertoire of GAD65-specific T-cells in type 1 diabetes patients with graft dysfunction after allogeneic islet transplantation.

    Get PDF
    Islet transplantation is one of the most promising therapies for type 1 diabetes (T1D). A major issue in islet transplantation is the loss of graft function at late phase. Several studies suggested the involvement of islet-specific T-cells in such islet graft dysfunction. In this study, we investigated the breadth and type of glutamic acid decarboxylase 65 (GAD65)-specific T-cells in T1D patients after allogeneic islet transplantation. Peripheral blood mononuclear cells (PBMCs) were obtained from islet-transplanted T1D patients during insulin-independent period and cultured for 7 days with pools of GAD65 overlapping peptides in the presence of IL-2. Cytokine secretion profiles of peptide-reactive T-cells were analyzed after a short-term restimulation with the same peptides by a multiplex bead-based cytokine assay and by an intracytoplasmic cytokine detection assay. Robust GAD65-specific CD4(+) and CD8(+) T-cell responses were detected in patients who eventually developed chronic graft dysfunction. Multiple GAD65 peptides were found to induce specific T-cell responses in these patients, indicating that the repertoire of GAD65-specific T-cells was broad. Furthermore, GAD65-specific CD4(+) T-cells were composed of heterogeneous populations, which differentially expressed cytokines including IFN-Îł and type 2 cytokines, but not IL-10. In contrast, patients who showed only marginal GAD65-specific T-cell responses maintained substantially longer graft survival and insulin independence. In conclusion, our study suggests that the emergence of islet-specific T-cells precedes the development of chronic graft dysfunction in islet-transplanted patients. Thus, our observations support the hypothesis that these islet-specific T-cells contribute to the development of chronic islet graft dysfunction

    The Demise of Islet Allotransplantation in the US: A Call for an Urgent Regulatory Update The ISLETS FOR US Collaborative

    Get PDF
    Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and more than minimally manipulated human cell and tissue products (HCT/Ps). Across the world, human islets are appropriately defined as minimally manipulated tissue which has led to islet transplantation becoming a standard-of-care procedure for patients with type 1 diabetes mellitus and problematic hypoglycemia. As a result of the outdated US regulations, only eleven patients underwent allo-ITx in the US between 2011-2016 and all in the setting of a clinical trial. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both, better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States

    The demise of islet allotransplantation in the United States: A call for an urgent regulatory update

    Get PDF
    Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and “more than minimally manipulated” human cell and tissue products (HCT/Ps). In contrast, across the world, human islets are appropriately defined as “minimally manipulated tissue” and not regulated as a drug, which has led to islet allotransplantation (allo-ITx) becoming a standard-of-care procedure for selected patients with type 1 diabetes mellitus. This regulatory distinction impedes patient access to islets for transplantation in the US. As a result only 11 patients underwent allo-ITx in the US between 2016 and 2019, and all as investigational procedures in the settings of a clinical trials. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States

    Inflammatory Response in Islet Transplantation

    No full text
    Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation
    corecore