3 research outputs found

    The role of mediterranean diet and gut microbiota in type- diabetes mellitus associated with obesity (diabesity)

    Get PDF
    The human body is made up of 10¹⁴ human cells and 10¹⁵ bacterial cells, forming a combined structure that is described as a “superorganism”. Commensal, symbiotic, and pathogenic microorganisms in the human body, many of which are located inside the intestine, affect health conditions and diseases. An important factor contributing to the development of chronic diseases is dysbiosis, which occurs when the number of pathogenic microorganisms increases. Dysbiosis is associated with increased intestinal permeability, endotoxemia (increased LPS), pro-inflammatory cytokine release, energy harvest, and adiposity, thus being involved in the pathogenesis of disorders like diabetes and obesity. Nutritional habits are the most important environmental factor that affects intestinal microbial composition. A dietary pattern that was proven successful in regulating gut microbiota is the renowned Mediterranean diet, which is characterized by high plant-based foods consumption, moderate fish and dairy products consumption, and low red meat consumption. There is an inverse relationship between adherence to the Mediterranean diet and chronic diseases like obesity and diabetes. In addition to the direct effects of the Mediterranean diet on the pathogenesis of these diseases, it can also be effective in preventing these diseases due to its effects on the intestinal microbiota. It is noted that the number of Bifidobacterium and Bacteroides increases the longer one’s eating habit adhere to the Mediterranean diet, and the number of Firmicutes decreases, accordingly, thus supporting the symbiotic distribution in the intestinal microbiota

    Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses.

    Get PDF
    Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation

    Targeting pattern recognition receptors (PRR) for vaccine adjuvantation:from synthetic PRR agonists to the potential of Defective Interfering Particles (DIPs) of viruses

    No full text
    Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation
    corecore