16 research outputs found

    Towards a robust algorithm to determine topological domains from colocalization data

    Full text link
    One of the most important tasks in understanding the complex spatial organization of the genome consists in extracting information about this spatial organization, the function and structure of chromatin topological domains from existing experimental data, in particular, from genome colocalization (Hi-C) matrices. Here we present an algorithm allowing to reveal the underlying hierarchical domain structure of a polymer conformation from analyzing the modularity of colocalization matrices. We also test this algorithm on several model polymer structures: equilibrium globules, random fractal globules and regular fractal (Peano) conformations. We define what we call a spectrum of cluster borders, and show that these spectra behave strikingly differently for equilibrium and fractal conformations, allowing us to suggest an additional criterion to identify fractal polymer conformations

    Electron Interactions in Bilayer Graphene: Marginal Fermi Liquid Behaviour and Zero Bias Anomaly

    Full text link
    We analyze the many-body properties of bilayer graphene (BLG) at charge neutrality, governed by long range interactions between electrons. Perturbation theory in a large number of flavors is used in which the interactions are described within a random phase approximation, taking account of dynamical screening effect. Crucially, the dynamically screened interaction retains some long range character, resulting in log2\log^2 renormalization of key quantities. We carry out the perturbative renormalization group calculations to one loop order, and find that BLG behaves to leading order as a marginal Fermi liquid. Interactions produce a log squared renormalization of the quasiparticle residue and the interaction vertex function, while all other quantities renormalize only logarithmically. We solve the RG flow equation for the Green function with logarithmic accuracy, and find that the quasiparticle residue flows to zero under RG. At the same time, the gauge invariant quantities, such as the compressibility, remain finite to log2\log^2 order, with subleading logarithmic corrections. The key experimental signature of this marginal Fermi liquid behavior is a strong suppression of the tunneling density of states, which manifests itself as a zero bias anomaly in tunneling experiments in a regime where the compressibility is essentially unchanged from the non-interacting value.Comment: 12 pages, 3 figure

    Land prices and railroad building in European Russia, 1860s to the early 1900s

    Get PDF
    This paper shows that railroad building in Russia, as in Europe and the US in the nineteenth century, improved the value of land, a classic benefit of transportation investment in largely agrarian countries. From a database constructed for this paper, we use cross-sectional data for the fifty European Russian regions to show the association of the length of the railroad (measured in 1894), land prices (measured in 1900) and annual growth of land prices (in rubles) for 1885–1910

    Late Ordovician brachiopods from the Chingiz Terrane, Kazakhstan, and their palaeogeography

    No full text

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET

    Light vector meson production in pp collisions at √s=7 TeV

    No full text
    The ALICE experiment has measured low-mass dimuon production in pp collisions at √s=7 TeV in the dimuon rapidity region 2.5<y<4. The observed dimuon mass spectrum is described as a superposition of resonance decays (η,ρ,ω,η′,ϕ) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for ω and ϕ are σω(1<pt<5 GeV/c,2.5<y<4)=5.28±0.54(stat)±0.49(syst) mb and σϕ(1<pt<5 GeV/c,2.5<y<4)=0.940±0.084(stat)±0.076(syst) mb. The differential cross sections d2σ/dydpt are extracted as a function of pt for ω and ϕ. The ratio between the ρ and ω cross section is obtained. Results for the ϕ are compared with other measurements at the same energy and with predictions by models

    Heavy flavour decay muon production at forward rapidity in proton–proton collisions at √s=7 TeV

    No full text
    The production of muons from heavy flavour decays is measured at forward rapidity in proton–proton collisions at √s=7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint=16.5 nb−1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5<y<4, over the transverse momentum range 2<pt<12 GeV/c. The results are compared to predictions based on perturbative QCD calculations

    Inclusive J/ψ production in pp collisions at √s=2.76 TeV

    No full text
    The ALICE Collaboration has measured inclusive J/ψ production in pp collisions at a center-of-mass energy √s=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are Linte=1.1 nb−1 and Lintμ=19.9 nb−1, and the corresponding signal statistics are NJ/ψe+e−=59±14 and NJ/ψμ+μ−=1364±53. We present dσJ/ψ/dy for the two rapidity regions under study and, for the forward-y range, d2σJ/ψ/dydpt in the transverse momentum domain 0<pt<8 GeV/c. The results are compared with previously published results at s=7 TeV and with theoretical calculations

    Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    Inclusive transverse momentum spectra of primary charged particles in Pb–Pb collisions at √sNN=2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0–5% and 70–80% of the hadronic Pb–Pb cross section. The measured charged particle spectra in |η|<0.8 and 0.3<pT<20 GeV/c are compared to the expectation in pp collisions at the same sNN, scaled by the number of underlying nucleon–nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAA. The result indicates only weak medium effects (RAA≈0.7) in peripheral collisions. In central collisions, RAA reaches a minimum of about 0.14 at pT=6–7 GeV/c and increases significantly at larger pT. The measured suppression of high-pT particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb–Pb collisions at the LHC
    corecore