20 research outputs found
Genetic Engineering of Lesquerella with Increased Ricinoleic Acid Content in Seed Oil
Seeds of castor (Ricinus communis) are enriched in oil with high levels of the industrially valuable fatty acid ricinoleic acid (18:1OH), but production of this plant is limited because of the cooccurrence of the ricin toxin in its seeds. Lesquerella (Physaria fendleri) is being developed as an alternative industrial oilseed because its seeds accumulate lesquerolic acid (20:1OH), an elongated form of 18:1OH in seed oil which lacks toxins. Synthesis of 20:1OH is through elongation of 18:1OH by a lesquerella elongase, PfKCS18. Oleic acid (18:1) is the substrate for 18:1OH synthesis, but it is also used by fatty acid desaturase 2 (FAD2) and FAD3 to sequentially produce linoleic and linolenic acids. To develop lesquerella that produces 18:1OH-rich seed oils such as castor, RNA interference sequences targeting KCS18, FAD2 and FAD3 were introduced to lesquerella to suppress the elongation and desaturation steps. Seeds from transgenic lines had increased 18:1OH to 1.1–26.6% compared with that of 0.4–0.6% in wild-type (WT) seeds. Multiple lines had reduced 18:1OH levels in the T2 generation, including a top line with 18:1OH reduced from 26.7% to 19%. Transgenic lines also accumulated more 18:1 than that of WT, indicating that 18:1 is not efficiently used for 18:1OH synthesis and accumulation. Factors limiting 18:1OH accumulation and new targets for further increasing 18:1OH production are discussed. Our results provide insights into complex mechanisms of oil biosynthesis in lesquerella and show the biotechnological potential to tailor lesquerella seeds to produce castor-like industrial oil functionality
CRISPR/Cas9-Induced fad2 and rod1 Mutations Stacked With fae1 Confer High Oleic Acid Seed Oil in Pennycress (Thlaspi arvense L.)
Pennycress (Thlaspi arvense L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses. Here, we utilized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to produce knockout mutations in the FATTY ACID DESATURASE2 (FAD2) and REDUCED OLEATE DESATURATION1 (ROD1) genes to increase oleic acid content. High oleic acid (18:1) oil is valued for its oxidative stability that is superior to the polyunsaturated fatty acids (PUFAs) linoleic (18:2) and linolenic (18:3), and better cold flow properties than the very long chain fatty acid (VLCFA) erucic (22:1). When combined with a FATTY ACID ELONGATION1 (fae1) knockout mutation, fad2 fae1 and rod1 fae1 double mutants produced ∼90% and ∼60% oleic acid in seed oil, respectively, with PUFAs in fad2 fae1 as well as fad2 single mutants reduced to less than 5%. MALDI-MS spatial imaging analyses of phosphatidylcholine (PC) and triacylglycerol (TAG) molecular species in wild-type pennycress embryo sections from mature seeds revealed that erucic acid is highly enriched in cotyledons which serve as storage organs, suggestive of a role in providing energy for the germinating seedling. In contrast, PUFA-containing TAGs are enriched in the embryonic axis, which may be utilized for cellular membrane expansion during seed germination and seedling emergence. Under standard growth chamber conditions, rod1 fae1 plants grew like wild type whereas fad2 single and fad2 fae1 double mutant plants exhibited delayed growth and overall reduced heights and seed yields, suggesting that reducing PUFAs below a threshold in pennycress had negative physiological effects. Taken together, our results suggest that combinatorial knockout of ROD1 and FAE1 may be a viable route to commercially increase oleic acid content in pennycress seed oil whereas mutations in FAD2 will likely require at least partial function to avoid fitness trade-offs
A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered \u3ci\u3eArabidopsis thaliana\u3c/i\u3e seeds
Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to \u3e50% of total fatty acids. In addition, \u3e2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions.
Includes supplementary information
A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered \u3ci\u3eArabidopsis thaliana\u3c/i\u3e seeds
Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to \u3e50% of total fatty acids. In addition, \u3e2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions.
Includes supplementary information
Generating Pennycress (Thlaspi arvense) Seed Triacylglycerols and Acetyl-Triacylglycerols Containing Medium-Chain Fatty Acids
Thlaspi arvense L. (pennycress) is a cold-tolerant Brassicaceae that produces large amounts of seeds rich in triacylglycerols and protein, making it an attractive target for domestication into an offseason oilseed cash cover crop. Pennycress is easily genetically transformed, enabling synthetic biology approaches to tailor oil properties for specific biofuel and industrial applications. To test the feasibility in pennycress of producing TAGs and acetyl-TAGs rich in medium-chain fatty acids (MCFAs; C6–C14) for industrial, biojet fuel and improved biodiesel applications, we generated transgenic lines with seed-specific expression of unique acyltransferase (LPAT and diacylglycerol acyltransferase) genes and thioesterase (FatB) genes isolated from Cuphea viscosissima, Cuphea avigera var. pulcherrima, Cuphea hookeriana, Coco nucifera, and Umbellularia californica. Wild-type pennycress seed TAGs accumulate no fatty acids shorter than 16C and less than 5 mol percent C16 as palmitic acid (16:0). Co-expressing UcFatB and CnLPAT produced up to 17 mol% accumulation of lauric acid (12:0) in seed TAGs, whereas CvFatB1 CvLPAT2 CpDGAT1 combinatorial expression produced up to 27 mol% medium chain FAs Medium Chain Fatty Acids mostly in the form of capric acid (10:0). CpFatB2 ChFatB2 combinatorial expression predominantly produced, in equal parts, up to 28 mol% myristic acid (14:0) and palmitic acid. Genetically crossing the combinatorial constructs into a fatty acid elongation1 (fae1) mutant that produced no 22:1 erucic acid, and with an Euonymus alatus diacylglycerol acetyltransferase (EaDAcT)-expressing line that produced 60 mol% acetyl-TAGs, had no or relatively minor effects on MCFAs accumulation, suggesting fluxes to MCFAs were largely unaltered. Seed germination assays revealed no or minor delays in seed germination for most lines, the exception being CpFatB2 ChFatB2-expressing lines, which had substantially slower seed germination rates. Taken together, these data show that pennycress can be engineered to produce seeds accumulating modest amounts of MCFAs of varying carbon-chain length in TAGs and acetyl-TAGs, with rates of seed germination being delayed in only some cases. We hypothesize that increasing MCFAs further may require functional reductions to endogenous transferases and/or other FA elongases
Insect pest management with sex pheromone precursors from engineered oilseed plants
Pheromones have become an environmentally friendly alternative to conventional insecticides for pest control. Most current pheromone-based pest control products target lepidopteran pests of high-value crops, as today’s manufacturing processes cannot yet produce pheromones at low enough costs to enable their use for lower-value crops, especially commodity crops. Camelina sativa seeds genetically modified to express (Z)-11-hexadecenoic acid, a sex pheromone precursor of several moth species, provided the oil from which the precursor was isolated, purified and transformed into the final pheromone. Trap lures containing this pheromone were then assessed for their capacity to manage moth pests in the field. Plant-derived pheromone lures proved equally effective as synthetic pheromone lures in monitoring the diamondback moth, Plutella xylostella, in cabbage and disrupting mating of cotton bollworm, Helicoverpa armigera, in common bean fields. Our study demonstrates the biological efficacy and economic feasibility of pheromone production in plant factories by metabolic engineering of an oilseed crop
Chromosome‑level assembly and analysis of \u3ci\u3eCamelina neglecta\u3c/i\u3e: a novel diploid model for Camelina biotechnology research
Camelina neglecta is a new diploid Brassicaceae species, which has great research value because of its close relationship with the hexaploid oilseed crop Camelina sativa. Here, we report a chromosome-level assembly of C. neglecta with a total length of 210 Mb. By adopting PacBio sequencing and Hi-C technology, the C. neglecta genome was assembled into 6 chromosomes with scaffold N50 of 29.62 Mb. C. neglecta has undergone the whole-genome triplication (γ) shared among eudicots and two whole-genome duplications (α and β) shared by crucifers, but it has not undergone a specific whole-genome duplication event. By synteny analysis between C. neglecta and C. sativa, we successfully used the method of calculating Ks to distinguish the three subgenomes of C. sativa and determined that C. neglecta was closest to the first subgenome (SG1) of C. sativa. Further, transcriptomic analysis revealed the key genes associated with seed oil biosynthesis and its transcriptional regulation, including SAD, FAD2, FAD3, FAE1, ABI3, WRI1 and FUS3 displaying high expression levels in C. neglecta seeds. The high representability of C. neglecta as a model species for Camelina-based biotechnology research has been demonstrated for the first time. In particular, floral Agrobacterium tumefaciens infiltration-based transformation of C. neglecta, leading to overexpression of CvLPAT2, CpDGAT1 and CvFatB1 transgenes, was demonstrated for medium-chain fatty acid accumulation in C. neglecta seed oil. This study provides an important genomic resource and establishes C. neglecta as a new model for oilseed biotechnology research
Molecular tools enabling pennycress (\u3ci\u3eThlaspi arvense\u3c/i\u3e) as a model plant and oilseed cash cover crop
Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly model system akin to Arabidopsis that is well-suited for both laboratory and field experimentation. We sequenced the diploid genome of the spring-type Spring 32-10 inbred line (1C DNA content of 539 Mb; 2n = 14), identifying variation that may explain phenotypic differences with winter-type pennycress, as well as predominantly a one-to-one correspondence with Arabidopsis genes, which makes translational research straightforward. We developed an Agrobacterium-mediated floral dip transformation method (0.5% transformation efficiency) and introduced CRISPR-Cas9 constructs to produce indel mutations in the putative FATTY ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and creating an edible seed oil comparable to that of canola. We also stably transformed pennycress with the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene, producing low-viscosity acetyltriacylglycerol- containing seed oil suitable as a diesel-engine drop-in fuel. Adoption of pennycress as a model system will accelerate oilseed-crop translational research and facilitate pennycress’ rapid domestication to meet the growing sustainable food and fuel demands
A Plant DJ-1 Homolog Is Essential for Arabidopsis thaliana Chloroplast Development
Protein superfamilies can exhibit considerable diversification of function among their members in various organisms. The DJ-1 superfamily is composed of proteins that are principally involved in stress response and are widely distributed in all kingdoms of life. The model flowering plant Arabidopsis thaliana contains three close homologs of animal DJ-1, all of which are tandem duplications of the DJ-1 domain. Consequently, the plant DJ-1 homologs are likely pseudo-dimeric proteins composed of a single polypeptide chain. We report that one A. thaliana DJ-1 homolog (AtDJ1C) is the first DJ-1 homolog in any organism that is required for viability. Homozygous disruption of the AtDJ1C gene results in non-viable, albino seedlings that can be complemented by expression of wild-type or epitope-tagged AtDJ1C. The plastids from these dj1c plants lack thylakoid membranes and granal stacks, indicating that AtDJ1C is required for proper chloroplast development. AtDJ1C is expressed early in leaf development when chloroplasts mature, but is downregulated in older tissue, consistent with a proposed role in plastid development. In addition to its plant-specific function, AtDJ1C is an atypical member of the DJ-1 superfamily that lacks a conserved cysteine residue that is required for the functions of most other superfamily members. The essential role for AtDJ1C in chloroplast maturation expands the known functional diversity of the DJ-1 superfamily and provides the first evidence of a role for specialized DJ-1-like proteins in eukaryotic development