25 research outputs found

    Nucleation in emulsion polymerizatiion: steps towards a non-micellar nucleation theory

    No full text

    Nucleation in emulsion polymerizatiion: steps towards a non-micellar nucleation theory

    No full text

    Towards a consistent mechanism of emulsion polymerization—new experimental details

    Get PDF
    The application of atypical experimental methods such as conductivity measurements, optical microscopy, and nonstirred polymerizations to investigations of the ‘classical’ batch ab initio emulsion polymerization of styrene revealed astonishing facts. The most important result is the discovery of spontaneous emulsification leading to monomer droplets even in the quiescent styrene in water system. These monomer droplets with a size between a few and some hundreds of nanometers, which are formed by spontaneous emulsification as soon as styrene and water are brought into contact, have a strong influence on the particle nucleation, the particle morphology, and the swelling of the particles. Experimental results confirm that micelles of low-molecular-weight surfactants are not a major locus of particle nucleation. Brownian dynamics simulations show that the capture of matter by the particles strongly depends on the polymer volume fraction and the size of the captured species (primary free radicals, oligomers, single monomer molecules, or clusters)

    Mobility of polyelectrolyte multilayer: Influence of external stimuli

    No full text

    Lateral mobility of polyelectrolyte chains in multilayers

    No full text
    In this work, the lateral mobility of polyelectrolyte multilayers was investigated by means of the fluorescence recovery after photobleaching (FRAP) technique, with special attention to the effect of relevant parameters during and after preparation. Different polyelectrolytes with respect to charge density, stiffness, and hydrophilicity were compared. From the experimental results emerged that the density of charged sites along the polymer is the most important parameter controlling the formation of polymer complexes. At higher charge density, more complexes are formed, and the diffusion coefficient decreases. It was observed that the intrinsic backbone stiffness reduces the interpenetration of polyelectrolyte layers and the formation of complexes promoting the lateral mobility. In addition, the lateral mobility increases with increasing ionic strength and with decreasing hydration shell of the added anion in the polyelectrolyte solution. The effect of heating or annealing in electrolyte solution after preparation was also investigated along with the embedding of the probing layer at controlled distances to the multilayer surface
    corecore