23 research outputs found

    Depletion of CLK2 sensitizes glioma stem-like cells to PI3K/mTOR and FGFR inhibitors.

    Get PDF
    The Cdc2-like kinases (CLKs) regulate RNA splicing and have been shown to suppress cell growth. Knockdown of CLK2 was found to block glioma stem-like cell (GSC) growth in vivo through the AKT/FOXO3a/p27 pathway without activating mTOR and MAPK signaling, suggesting that these pathways mediate resistance to CLK2 inhibition. We identified CLK2 binding partners using immunoprecipitation assays and confirmed their interactions in vitro in GSCs. We then tested the cellular viability of several signaling inhibitors in parental and CLK2 knockdown GSCs. Our results demonstrate that CLK2 binds to 14-3-3Ď„ isoform and prevents its ubiquitination in GSCs. Stable CLK2 knockdown increased PP2A activity and activated PI3K signaling. Treatment with a PI3K/mTOR inhibitor in CLK2 knockdown cells led to a modest reduction in cell viability compared to drug treatment alone at a lower dose. However, FGFR inhibitor in CLK2 knockdown cells led to a decrease in cell viability and increased apoptosis. Reduced expression of CLK2 in glioblastoma, in combination with FGFR inhibitors, led to synergistic apoptosis induction and cell cycle arrest compared to blockade or either kinase alone

    A validated integrated clinical and molecular glioblastoma long-term survival-predictive nomogram.

    Get PDF
    Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adulthood. Despite multimodality treatments, including maximal safe resection followed by irradiation and chemotherapy, the median overall survival times range from 14 to 16 months. However, a small subset of GBM patients live beyond 5 years and are thus considered long-term survivors. Methods: A retrospective analysis of the clinical, radiographic, and molecular features of patients with newly diagnosed primary GBM who underwent treatment at The University of Texas MD Anderson Cancer Center was conducted. Eighty patients had sufficient quantity and quality of tissue available for next-generation sequencing and immunohistochemical analysis. Factors associated with survival time were identified using proportional odds ordinal regression. We constructed a survival-predictive nomogram using a forward stepwise model that we subsequently validated using The Cancer Genome Atlas. Results: Univariate analysis revealed 3 pivotal genetic alterations associated with GBM survival: both high tumor mutational burden ( Conclusions: Our newly devised long-term surviva

    Molecular Mechanisms of Treatment Resistance in Glioblastoma

    No full text
    Glioblastoma is the most common malignant primary brain tumor in adults and is almost invariably fatal. Despite our growing understanding of the various mechanisms underlying treatment failure, the standard-of-care therapy has not changed over the last two decades, signifying a great unmet need. The challenges of treating glioblastoma are many and include inadequate drug or agent delivery across the blood–brain barrier, abundant intra- and intertumoral heterogeneity, redundant signaling pathways, and an immunosuppressive microenvironment. Here, we review the innate and adaptive molecular mechanisms underlying glioblastoma’s treatment resistance, emphasizing the intrinsic challenges therapeutic interventions must overcome—namely, the blood–brain barrier, tumoral heterogeneity, and microenvironment—and the mechanisms of resistance to conventional treatments, targeted therapy, and immunotherapy

    The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors

    No full text
    Establishing novel therapies for rare central nervous system (CNS) tumors is arduous due to challenges in conducting clinical trials in rare tumors. Immunotherapy treatment has been a rapidly developing field and has demonstrated improvements in outcomes for multiple types of solid malignancies. In rare CNS tumors, the role of immunotherapy is being explored. In this article, we review the preclinical and clinical data of various immunotherapy modalities in select rare CNS tumors, including atypical meningioma, aggressive pituitary adenoma, pituitary carcinoma, ependymoma, embryonal tumor, atypical teratoid/rhabdoid tumor, and meningeal solitary fibrous tumor. Among these tumor types, some studies have shown promise; however, ongoing clinical trials will be critical for defining and optimizing the role of immunotherapy for these patients

    Preclinical Models of Low-Grade Gliomas

    No full text
    Diffuse infiltrating low-grade glioma (LGG) is classified as WHO grade 2 astrocytoma with isocitrate dehydrogenase (IDH) mutation and oligodendroglioma with IDH1 mutation and 1p/19q codeletion. Despite their better prognosis compared with glioblastoma, LGGs invariably recur, leading to disability and premature death. There is an unmet need to discover new therapeutics for LGG, which necessitates preclinical models that closely resemble the human disease. Basic scientific efforts in the field of neuro-oncology are mostly focused on high-grade glioma, due to the ease of maintaining rapidly growing cell cultures and highly reproducible murine tumors. Development of preclinical models of LGG, on the other hand, has been difficult due to the slow-growing nature of these tumors as well as challenges involved in recapitulating the widespread genomic and epigenomic effects of IDH mutation. The most recent WHO classification of CNS tumors emphasizes the importance of the role of IDH mutation in the classification of gliomas, yet there are relatively few IDH-mutant preclinical models available. Here, we review the in vitro and in vivo preclinical models of LGG and discuss the mechanistic challenges involved in generating such models and potential strategies to overcome these hurdles

    The Promise of Poly(ADP-Ribose) Polymerase (PARP) Inhibitors in Gliomas

    No full text
    Diffuse infiltrating gliomas are a clinically and molecularly heterogeneous group of tumors that are uniformly incurable. Despite our growing knowledge of genomic and epigenomic alterations in gliomas, standard treatments have not changed in the past 2 decades and remain limited to surgical resection, ionizing radiation, and alkylating chemotherapeutic agents. Development of novel therapeutics for diffuse gliomas has been challenging due to inter- and intra-tumoral heterogeneity, diffuse infiltrative nature of gliomas, inadequate tumor/drug concentration due to blood–brain barrier, and an immunosuppressive tumor microenvironment. Given the high frequency of DNA damage pathway alterations in gliomas, researchers have focused their efforts in targeting the DNA damage pathways for the treatment of gliomas. A growing body of data has shed light on the role of poly(ADP-ribose) polymerase (PARP) in combination with radiation and temozolomide in high-grade gliomas. Furthermore, a novel therapeutic strategy in low-grade glioma is the recent elucidation for a potential role of PARP inhibitors in gliomas with IDH1/2 mutations. This review highlights the concepts behind targeting PARP in gliomas with a focus on putative predictive biomarkers of response. We further discuss the challenges involved in the successful development of PARP inhibitors in gliomas, including the intracranial location of the tumor and overlapping toxicities with current standards of care, and promising strategies to overcome these hurdles

    Radiation-induced central demyelination, report of a rare subacute complication and review of the literature

    No full text
    A 26-year-old woman with a right frontal diffuse astrocytoma, isocitrate dehydrogenase-mutant, WHO Grade II was treated with resection and radiotherapy (54 Gy in 30 fractions by volumetric modulated arc therapy). Ten weeks after radiation, she developed left leg weakness, and a brain magnetic resonance image demonstrated multifocal acute demyelinating brain lesions within regions that received 10-30 Gy. She improved with high dose steroids and subsequently resumed temozolomide. She had no prior history of a demyelinating disorder. The mechanisms of neurotoxicity from radiation include vascular injury, demyelination, and oxidative damage to neural stem cells and oligodendrocytes; though the pathophysiology is not fully understood. Subacute demyelination in the absence of known demyelinating disease is rare with only four cases previously described. This rare complication can be successfully managed with steroids when symptomatic. It is important to consider demyelination if new distant enhancing lesions arise following radiation of a primary brain tumor when findings are atypical for recurrence

    Recent Therapeutic Advances in Pituitary Carcinoma

    No full text
    Pituitary carcinoma (PC) is a rare, aggressive malignancy that comprises 0.1–0.2% of all pituitary tumors. PC is defined anatomically as a pituitary tumor that metastasizes outside the primary intrasellar location as noncontiguous lesions in the central nervous system or as metastases to other organs. Similar to pituitary adenoma, PC originates from various cell types of the pituitary gland and can be functioning or nonfunctioning, with the former constituting the majority of the cases. Compression of intricate skull-based structures, excessive hormonal secretion, impaired pituitary function from therapy, and systemic metastases lead to debilitating symptoms and a poor survival outcome in most cases. PC frequently recurs despite multimodality treatments, including surgical resection, radiotherapy, and biochemical and cytotoxic treatments. There is an unmet need to better understand the pathogenesis and molecular characterization of PC to improve therapeutic strategies. As our understanding of the role of signaling pathways in the tumorigenesis of and malignant transformation of PC evolves, efforts have focused on targeted therapy. In addition, recent advances in the use of immune checkpoint inhibitors to treat various solid cancers have led to an interest in exploring the role of immunotherapy for the treatment of aggressive refractory pituitary tumors. Here, we review our current understanding of the pathogenesis, molecular characterization, and treatment of PC. Particular attention is given to emerging treatment options, including targeted therapy, immunotherapy, and peptide receptor radionuclide therapy
    corecore