49 research outputs found

    A new hybrid cascaded switched-capacitor reduced switch multilevel inverter for renewable sources and domestic loads

    Get PDF
    This multilevel inverter type summarizes an output voltage of medium voltage based on a series connection of power cells employing standard configurations of low-voltage components. The main problems of cascaded switched-capacitor multilevel inverters (CSCMLIs) are the harmful reverse flowing current of inductive loads, the large number of switches, and the surge current of the capacitors. As the number of switches increases, the reliability of the inverter decreases. To address these issues, a new CSCMLI is proposed using two modules containing asymmetric DC sources to generate 13 levels. The main novelty of the proposed configuration is the reduction of the number of switches while increasing the maximum output voltage. Despite the many similarities, the presented topology differs from similar topologies. Compared to similar structures, the direction of some switches is reversed, leading to a change in the direction of current flow. By incorporating the lowest number of semiconductors, it was demonstrated that the proposed inverter has the lowest cost function among similar inverters. The role of switched-capacitor inrush current in the selection of switch, diode, and DC source for inverter operation in medium and high voltage applications is presented. The inverter performance to supply the inductive loads is clarified. Comparison of the simulation and experimental results validates the effectiveness of the proposed inverter topology, showing promising potentials in photovoltaic, buildings, and domestic applications. A video demonstrating the experimental test, and all manufacturing data are attached. © 2013 IEEE

    Smart Microgrids

    No full text
    Public support and feed-in tariff as a nonvariable compensation for the electric power production of energy have suppressed the risky investment of distributed generators (DGs) in smart distribution systems (SDSs). Although the using renewable energy technologies and the incorporation of plug-in DGs into SDS may have positive effects on congestion management, power loss reduction, and sustainability, they may create some difficulties relating to manage the system optimally by considering the intermittency of renewable resources in power production and uncertainties. Many researches have been carried out to deliver the high-quality power to the end-users with acceptable reliability. This book aims to present the recent materials related to the smart microgrids and the management of intermittent renewable energy sources that organized into seven chapters
    corecore