20 research outputs found

    Efficient CO2 absorption through wet and falling film membrane contactors: insights from modeling and simulation

    No full text
    Abstract The release of excessive carbon dioxide (CO2) into the atmosphere poses potential threats to the well-being of various species on Earth as it contributes to global working. Therefore, it is necessary to implement appropriate actions to moderate CO2 emissions. A hollow fiber membrane contactor is an emerging technology that combines the advantages of separation processes and chemical absorptions. This study investigates the efficacy of wet and falling film membrane contactors (FFMC) in enhancing CO2 absorption in a monoethanolamine (MEA) aqueous solution. By analyzing factors such as membrane surface area, gas flow rate, liquid inlet flow rates, gas–liquid contact time, and solvent loading, we examine the CO2 absorption process in both contactors. Our results reveal a clear advantage of FFMC, achieving an impressive 85% CO2 removal efficiency compared to 60% with wet membranes. We employ COMSOL Multiphysics 6.1 simulation software and finite element analysis to validate our findings, demonstrating a close agreement between predicted and experimental values, with an average relative error of approximately 4.3%. These findings highlight the significant promise of FFMC for applications in CO2 capture

    A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors

    No full text
    Global demand for alternative renewable energy sources is increasing due to the consumption of fossil fuels and the increase in greenhouse gas emissions. Hydrogen (H2) from biomass gasification is a green energy segment among the alternative options, as it is environmentally friendly, renewable, and sustainable. Accordingly, researchers focus on conducting experiments and modeling the reforming reactions in conventional and membrane reactors. The construction of computational fluid dynamics (CFD) models is an essential tool used by researchers to study the performance of reforming and membrane reactors for hydrogen production and the effect of operating parameters on the methane stream, improving processes for reforming untreated biogas in a catalyst-fixed bed and membrane reactors. This review article aims to provide a good CFD model overview of recent progress in catalyzing hydrogen production through various reactors, sustainable steam reforming systems, and carbon dioxide utilization. This article discusses some of the issues, challenges, and conceivable arrangements to aid the efficient generation of hydrogen from steam reforming catalytic reactions and membrane reactors of bioproducts and fossil fuels

    Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane

    No full text
    A membrane contactor is a device that attains the transfer of gas/liquid or liquid/liquid mass without dispersion of one phase within another. Membrane contactor modules generally provide 30 times more surface area than can be achieved in traditional gas absorption towers and 500 times what can be obtained in liquid/liquid extraction columns. By contrast, membrane contactor design has limitations, as the presence of the membrane adds additional resistance to mass transfer compared with conventional solvent absorption systems. Increasing mass transfer in the gas and solvent phase boundary layers is necessary to reduce additional resistance. This study aims to increase the mass transfer in the gas phase layer without interfering with membrane structure by oscillating the velocity of the feed gas. Therefore, an unsteady state mathematical model was improved to consider feed gas oscillation. The model equation was solved using Comsol Multiphysics version 6.0. The simulation results reveal that the maximum CO2 removal rate was about 30% without oscillation, and at an oscillation frequency of 0.05 Hz, the CO2 percent removal was almost doubled

    Transient Behavior and Control of Polyethylene Production in a Fluidized Bed Reactor Utilizing Population Balance Model

    No full text
    In this study, a fluidized bed reactor for polyethylene production was employed using a dry mode approach, where the recycle stream may contain components of a nature that cannot be condensed through standard cooling. To analyze the behavior of the fluidized bed reactors during the copolymerization of ethylene with butene, a dynamic population balance model was employed. The study includes sensitivity analyses through computer simulations to examine the variations in reactor temperature, molecular weights, catalyst feed rate, and monomer/comonomer concentrations in the fluidized bed reactor. It is noteworthy that the reactor exhibits instability under normal operational conditions and is sensitive to changes in the catalyst feed rate and coolant temperature of the heat exchanger. The findings also highlight challenges such as temperature fluctuations above the polymer melting point. This underscores the importance of implementing a temperature control system to prevent issues like reactor shutdown due to elevated temperatures. Dynamic instabilities were observed under specific circumstances and were successfully controlled using Proportional Integral Derivative (PID) control strategies. The population balance model is essential for understanding the complexity of transient polymerization reactions. It enables researchers to simulate and optimize polymerization processes by utilizing the detailed kinetics of the reaction

    Modeling and Simulation of a Multizone Circulating Reactor for Polyethylene Production with Internal Cooling

    No full text
    Polyolefins play a role in industries and are typically manufactured using two types of reactors: high-pressure tubular reactors and fluidized bed reactors. An innovative technology called the Multizone Circulating reactor (MZCR) has emerged, which introduces an innovative approach with interconnected polymerization zones creating a continuous loop of polymer flow. This study focuses on modeling and simulating ethylene gas phase polymerization within the MZCR in the presence of internal cooling to gain insights into its behavior. To achieve this, a comprehensive computational fluid dynamics (CFD) simulation was developed. It considered momentum, material, and energy balance aspects. The model equations were solved using the finite difference method in COMSOL Multiphysics version 6.1. The investigation primarily focused on studying the impact of incorporating a cooler into the riser section on the temperature profile within the reactor and ethylene conversion. The presence of this cooler resulted in a reduction in temperature change along the riser from approximately 8.0 °C to 4.0 °C. Moreover, it led to an increase of 7%, in ethylene single-pass conversion

    Chemical Absorption of CO2 Enhanced by Nanoparticles Using a Membrane Contactor: Modeling and Simulation

    No full text
    In the present work, membrane resistance was estimated and analyzed, and the results showed that total membrane resistance increased sharply when membrane pores were wetted. For further study, a two-dimensional (2D) mathematical model was developed to predict the chemical absorption of CO2 in aqueous methyldiethanolamine (MDEA)-based carbon nanotubes (CNTs) in a hollow fiber membrane (HFM) contactor. The membrane was divided into wet and dry regions, and equations were developed and solved using finite element method in COSMOL. The results revealed that the existence of solid nanoparticles enhanced CO2 removal rate. The variables with more significant influence were liquid flow rate and concentration of nanoparticles. Furthermore, there was a good match between experimental and modeling results, with the modeling estimates almost coinciding with experimental data. Solvent enhanced by solid nanoparticles significantly improved the separation performance of the membrane contactor. There was around 20% increase in CO2 removal when 0.5 wt% CNT was added to 5 wt% aqueous MDEA

    Separation of binary liquid mixtures by parametric pumping.

    No full text

    Effect of Feed Concentration in Equilibrium Parametric Pumps

    No full text
    The effect of high initial feed concentration in batch equilibrium parametric pumping was experimentally investigated at different bed temperatures and cycle times. The system studied was benzene-n-hexane over a silica gel bed. It was observed that the initial feed concentration which leads to the best separation is dictated by the shape of the equilibrium isotherms of the system. An increase in the temperature difference between hot and cold cycles was shown to improve the separation because it led to a more favorable equilibrium relationship. Experiments also indicated that a long enough cycle time must be selected for true equilibrium to be established within the system, otherwise maximum separation cannot be obtained. In mathematical modeling studies the effect of nonlineariry of equilibrium isotherms at high feed concentrations was shown to be very effective for predictions of the model.Publisher's Versio
    corecore