14,715 research outputs found

    Ferromagnetism of Weakly-Interacting Electrons in Disordered Systems

    Full text link
    It was realized two decades ago that the two-dimensional diffusive Fermi liquid phase is unstable against arbitrarily weak electron-electron interactions. Recently, using the nonlinear sigma model developed by Finkelstein, several authors have shown that the instability leads to a ferromagnetic state. In this paper, we consider diffusing electrons interacting through a ferromagnetic exchange interaction. Using the Hartree-Fock approximation to directly calculate the electron self energy, we find that the total energy is minimized by a finite ferromagnetic moment for arbitrarily weak interactions in two dimensions and for interaction strengths exceeding a critical proportional to the conductivity in three dimensions. We discuss the relation between our results and previous ones

    Evolution of Primordial Black Holes in Loop Quantum Gravity

    Full text link
    In this work, we study the evolution of Primordial Black Holes within the context of Loop Quantum Gravity. First we calculate the scale factor and energy density of the universe for different cosmic era and then taking these as inputs we study evolution of primordial black holes. From our estimation it is found that accretion of radiation does not affect evolution of primordial black holes in loop quantum gravity even though a larger number of primordial black holes may form in early universe in comparison with Einstein's or scalar-tensor theories.Comment: 8 pages, 1 figur

    Overtones of Isoscalar Giant Resonances in medium-heavy and heavy nuclei

    Full text link
    A semi-microscopic approach based on both the continum-random-phase-approximation (CRPA) method and a phenomenological treatment of the spreading effect is extended and applied to describe the main properties (particle-hole strength distribution, energy-dependent transition density, partial direct-nucleon-decay branching ratios) of the isoscalar giant dipole, second monopole, and second quadrupole resonances. Abilities of the approach are checked by description of gross properties of the main-tone resonances. Calculation results obtained for the resonances in a few singly- and doubly-closed-shell nuclei are compared with available experimental data.Comment: 12 pages, 14 figures, submitted to Phys. Rev.

    Present Acceleration of Universe, Holographic Dark Energy and Brans-Dicke Theory

    Full text link
    The present day accelerated expansion of the universe is naturally addressed within the Brans-Dicke theory just by using holographic dark energy model with inverse of Hubble scale as IR cutoff. It is also concluded that if the universe continues to expand, then one day it might be completely filled with dark energy.Comment: 10 page

    Titanate-Zircon-Apatite Bearing Diorite-Monzodiorites and their Resource Potentiality

    Get PDF
    Placer beach sand deposits are considered as the reserve for ilmenite, rutile, zircon, monazite, xenotime. The global reserve for titanium, zirconium and rare earth metals is accounted from the distribution of these miner-als in the beach sand. It is proposed to look into Archean diorites and monzodiorites as the potential resource for these minerals. These rocks contain sphene, ilmenite, zircon and apatite in trace amount but account for about 3 wt% of TiO,, 700 ppm of Zr, and about 500-800 ppm of rare earth in bulk. The mineralogical and geochemical characteristic of such rocks is discussed. The potentia-lity of sphene as a resource for titanium is highlighte

    Gyroscopic Precession and Inertial Forces in Axially Symmetric Stationary Spacetimes

    Get PDF
    We study the phenomenon of gyroscopic precession and the analogues of inertial forces within the framework of general relativity. Covariant connections between the two are established for circular orbits in stationary spacetimes with axial symmetry. Specializing to static spacetimes, we prove that gyroscopic precession and centrifugal force both reverse at the photon orbits. Simultaneous non-reversal of these in the case of stationary spacetimes is discussed. Further insight is gained in the case of static spacetime by considering the phenomena in a spacetime conformal to the original one. Gravi-electric and gravi-magnetic fields are studied and their relation to inertial forces is established.Comment: 21 pages, latex, no figures, http://202.41.67.76/~nayak/gpifass.te

    Environment assisted entanglement enhancement

    Full text link
    We consider dissipative atom-cavity systems and show that their collective dynamics leads to the maximization of entanglement for intermediate values of the cavity leakage parameter Îş\kappa. We discuss possible ways the reservoir influences entanglement. We first consider the entanglement of a single two-level atom with a microwave cavity that is coupled to another cavity. We show that the atom-cavity entanglement can be made to increase with cavity leakage. We next show that the entanglement between two atoms passing successively through a cavity can be maximised for intermediate values of Îş\kappa. We finally consider the micromaser where the increase of two-atom entanglement for stronger cavity-environment coupling is demonstrated for experimentally attainable values of the micromaser parameters.Comment: 4 pages, Revtex, 1 eps figure; minor changes to match with published versio

    Fractional Exclusion Statistics for the Multicomponent Sutherland Model

    Full text link
    We show by microscopic calculation that thermodynamics of the multicomponent Sutherland model is equivalent to that of a free particle system with fractional exclusion statistics at all temperatures. The parameters for exclusion statistics are given by the strength of the repulsive interaction, and have both intra- and inter-species components. We also show that low temperature properties of the system are described in terms of free fractional particles without the statistical parameters for different species. The effective exclusion statistics for intra-species at low temperatures depend on polarization of the system.Comment: 13 pages, using RevTex, 5 figures on reques

    Brans-Dicke Theory and primordial black holes in Early Matter-Dominated Era

    Full text link
    We show that primordial black holes can be formed in the matter-dominated era with gravity described by the Brans-Dicke theory. Considering an early matter-dominated era between inflation and reheating, we found that the primordial black holes formed during that era evaporate at a quicker than those of early radiation-dominated era. Thus, in comparison with latter case, less number of primordial black holes could exist today. Again the constraints on primordial black hole formation tend towards the larger value than their radiation-dominated era counterparts indicating a significant enhancement in the formation of primordial black holes during the matter-dominaed era.Comment: 9 page
    • …
    corecore