14,412 research outputs found

    Magnetic field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at v=5/2

    Full text link
    We show that the resistance of the v=5/2 quantum Hall state, confined to an interferometer, oscillates with magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at v=7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3,3,1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at v=5/2 are consistent with the latter.Comment: 10 pages, 8 figures, includes Supplemental Material

    On the giant magnon and spike solutions for strings on AdS3×_3\times S3^3

    Full text link
    We study solutions for the rotating strings on the sphere with a background NS-NS field and on the Anti-de-Sitter spacetime. We show the existence of magnon and single spike solutions on R×\timesS2^2 in the presence of constant magnetic field as two limiting cases. We also study the solution for strings on AdS3×_3\times S3^3 with Melvin deformation. The dispersion relations among various conserved charges are shown to receive finite corrections due to the deformation parameter. We further study the rotating string on AdS3×_3 \times S3^3 geometry with two conserved angular momenta on S3^3 and one spin along the AdS3_3. We show that there exists two kinds of solutions: a circular string solution and a helical string. We find out the dispersion relation among various charges and give physical interpretation of these solutions.Comment: 18 pages, 1 figure, typos fixed, minor changes, to appear in JHE

    Evolution of Primordial Black Holes in Loop Quantum Gravity

    Full text link
    In this work, we study the evolution of Primordial Black Holes within the context of Loop Quantum Gravity. First we calculate the scale factor and energy density of the universe for different cosmic era and then taking these as inputs we study evolution of primordial black holes. From our estimation it is found that accretion of radiation does not affect evolution of primordial black holes in loop quantum gravity even though a larger number of primordial black holes may form in early universe in comparison with Einstein's or scalar-tensor theories.Comment: 8 pages, 1 figur

    Correlation between stick-slip frictional sliding and charge transfer

    Full text link
    A decade ago, Budakian and Putterman (Phys. Rev. Lett., {\bf 85}, 1000 (2000)) ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the visco-elastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.Comment: 8 pages, 4 figures, To be appeared in Physical Review

    Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding

    Full text link
    The quantum Hall states at filling factors ν=5/2\nu=5/2 and 7/27/2 are expected to have Abelian charge e/2e/2 quasiparticles and non-Abelian charge e/4e/4 quasiparticles. For the first time we report experimental evidence for the non-Abelian nature of excitations at ν=7/2\nu=7/2 and examine the fermion parity, a topological quantum number of an even number of non-Abelian quasiparticles, by measuring resistance oscillations as a function of magnetic field in Fabry-P\'erot interferometers using new high purity heterostructures. The phase of observed e/4e/4 oscillations is reproducible and stable over long times (hours) near ν=5/2\nu=5/2 and 7/27/2, indicating stability of the fermion parity. When phase fluctuations are observed, they are predominantly π\pi phase flips, consistent with fermion parity change. We also examine lower-frequency oscillations attributable to Abelian interference processes in both states. Taken together, these results constitute new evidence for the non-Abelian nature of e/4e/4 quasiparticles; the observed life-time of their combined fermion parity further strengthens the case for their utility for topological quantum computation.Comment: A significantly revised version; 54 double-column pages containing 14 pages of main text + Supplementary Materials. The figures, which include a number of new figures, are now incorporated into the tex
    • …
    corecore